inverse homogenization
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Àlex Ferrer ◽  
Sebastián Miguel Giusti

PurposeThe purpose of this study is to solve the inverse homogenization problem, or so-called material design problem, using the topological derivative concept.Design/methodology/approachThe optimal topology is obtained through a relaxed formulation of the problem by replacing the characteristic function with a continuous design variable, so-called density variable. The constitutive tensor is then parametrized with the density variable through an analytical interpolation scheme that is based on the topological derivative concept. The intermediate values that may appear in the optimal topologies are removed by penalizing the perimeter functional.FindingsThe optimization process benefits from the intermediate values that provide the proposed method reaching to solutions that the topological derivative had not been able to find before. In addition, the presented theory opens the path to propose a new framework of research where the topological derivative uses classical optimization algorithms.Originality/valueThe proposed methodology allows us to use the topological derivative concept for solving the inverse homogenization problem and to fulfil the optimality conditions of the problem with the use of classical optimization algorithms. The authors solved several material design examples through a projected gradient algorithm to show the advantages of the proposed method.



2021 ◽  
Author(s):  
Joel C. Najmon ◽  
Homero Valladares ◽  
Andres Tovar

Abstract Multiscale topology optimization (MSTO) is a numerical design approach to optimally distribute material within coupled design domains at multiple length scales. Due to the substantial computational cost of performing topology optimization at multiple scales, MSTO methods often feature subroutines such as homogenization of parameterized unit cells and inverse homogenization of periodic microstructures. Parameterized unit cells are of great practical use, but limit the design to a pre-selected cell shape. On the other hand, inverse homogenization provide a physical representation of an optimal periodic microstructure at every discrete location, but do not necessarily embody a manufacturable structure. To address these limitations, this paper introduces a Gaussian process regression model-assisted MSTO method that features the optimal distribution of material at the macroscale and topology optimization of a manufacturable microscale structure. In the proposed approach, a macroscale optimization problem is solved using a gradient-based optimizer The design variables are defined as the homogenized stiffness tensors of the microscale topologies. As such, analytical sensitivity is not possible so the sensitivity coefficients are approximated using finite differences after each microscale topology is optimized. The computational cost of optimizing each microstructure is dramatically reduced by using Gaussian process regression models to approximate the homogenized stiffness tensor. The capability of the proposed MSTO method is demonstrated with two three-dimensional numerical examples. The correlation of the Gaussian process regression models are presented along with the final multiscale topologies for the two examples: a cantilever beam and a 3-point bending beam.





Author(s):  
N Hedjazian ◽  
Y Capdeville ◽  
T Bodin

Summary Seismic imaging techniques such as elastic full waveform inversion (FWI) have their spatial resolution limited by the maximum frequency present in the observed waveforms. Scales smaller than a fraction of the minimum wavelength cannot be resolved, and only a smoothed, effective version of the true underlying medium can be recovered. These finite-frequency effects are revealed by the upscaling or homogenization theory of wave propagation. Homogenization aims at computing larger scale effective properties of a medium containing small-scale heterogeneities. We study how this theory can be used in the context of FWI. The seismic imaging problem is broken down in a two-stage multiscale approach. In the first step, called homogenized full waveform inversion (HFWI), observed waveforms are inverted for a smooth, fully anisotropic effective medium, that does not contain scales smaller than the shortest wavelength present in the wavefield. The solution being an effective medium, it is difficult to directly interpret it. It requires a second step, called downscaling or inverse homogenization, where the smooth image is used as data, and the goal is to recover small-scale parameters. All the information contained in the observed waveforms is extracted in the HFWI step. The solution of the downscaling step is highly non-unique as many small-scale models may share the same long wavelength effective properties. We therefore rely on the introduction of external a priori information, and cast the problem in a Bayesian formulation. The ensemble of potential fine-scale models sharing the same long wavelength effective properties is explored with a Markov chain Monte Carlo algorithm. We illustrate the method with a synthetic cavity detection problem: we search for the position, size and shape of void inclusions in a homogeneous elastic medium, where the size of cavities is smaller than the resolving length of the seismic data. We illustrate the advantages of introducing the homogenization theory at both stages. In HFWI, homogenization acts as a natural regularization helping convergence toward meaningful solution models. Working with fully anisotropic effective media prevents the leakage of anisotropy induced by the fine scales into isotropic macro-parameters estimates. In the downscaling step, the forward theory is the homogenization itself. It is computationally cheap, allowing us to consider geological models with more complexity (e.g. including discontinuities) and use stochastic inversion techniques.





2020 ◽  
Vol 368 ◽  
pp. 113170 ◽  
Author(s):  
Julian K. Lüdeker ◽  
Ole Sigmund ◽  
Benedikt Kriegesmann


Materialia ◽  
2020 ◽  
Vol 11 ◽  
pp. 100730 ◽  
Author(s):  
Xiran Cai ◽  
Laura Peralta ◽  
Renald Brenner ◽  
Gianluca Iori ◽  
Didier Cassereau ◽  
...  


2020 ◽  
Vol 36 (6) ◽  
pp. 065009
Author(s):  
Fioralba Cakoni ◽  
Shari Moskow ◽  
Tayler Pangburn


2020 ◽  
Vol 2020 (0) ◽  
pp. J01205
Author(s):  
Masatoshi SHIMODA ◽  
Minami FUJIOKA ◽  
Takumi KATO




Sign in / Sign up

Export Citation Format

Share Document