Implicit Methods

Author(s):  
Ralf Hartmann ◽  
Francesco Bassi ◽  
Igor Bosnyakov ◽  
Lorenzo Botti ◽  
Alessandro Colombo ◽  
...  
Keyword(s):  
1999 ◽  
Vol 173 ◽  
pp. 309-314 ◽  
Author(s):  
T. Fukushima

AbstractBy using the stability condition and general formulas developed by Fukushima (1998 = Paper I) we discovered that, just as in the case of the explicit symmetric multistep methods (Quinlan and Tremaine, 1990), when integrating orbital motions of celestial bodies, the implicit symmetric multistep methods used in the predictor-corrector manner lead to integration errors in position which grow linearly with the integration time if the stepsizes adopted are sufficiently small and if the number of corrections is sufficiently large, say two or three. We confirmed also that the symmetric methods (explicit or implicit) would produce the stepsize-dependent instabilities/resonances, which was discovered by A. Toomre in 1991 and confirmed by G.D. Quinlan for some high order explicit methods. Although the implicit methods require twice or more computational time for the same stepsize than the explicit symmetric ones do, they seem to be preferable since they reduce these undesirable features significantly.


2021 ◽  
Vol 83 (1) ◽  
Author(s):  
David Schaller ◽  
Manuel Lafond ◽  
Peter F. Stadler ◽  
Nicolas Wieseke ◽  
Marc Hellmuth

AbstractSeveral implicit methods to infer horizontal gene transfer (HGT) focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of a graph, the later-divergence-time (LDT) graph, whose vertices correspond to genes colored by their species. We investigate these graphs in the setting of relaxed scenarios, i.e., evolutionary scenarios that encompass all commonly used variants of duplication-transfer-loss scenarios in the literature. We characterize LDT graphs as a subclass of properly vertex-colored cographs, and provide a polynomial-time recognition algorithm as well as an algorithm to construct a relaxed scenario that explains a given LDT. An edge in an LDT graph implies that the two corresponding genes are separated by at least one HGT event. The converse is not true, however. We show that the complete xenology relation is described by an rs-Fitch graph, i.e., a complete multipartite graph satisfying constraints on the vertex coloring. This class of vertex-colored graphs is also recognizable in polynomial time. We finally address the question “how much information about all HGT events is contained in LDT graphs” with the help of simulations of evolutionary scenarios with a wide range of duplication, loss, and HGT events. In particular, we show that a simple greedy graph editing scheme can be used to efficiently detect HGT events that are implicitly contained in LDT graphs.


Author(s):  
Mohammad Rezaiee-Pajand ◽  
S. A. H. Esfehani ◽  
H. Ehsanmanesh

A new family of time integration methods is formulated. The recommended technique is useful and robust for the loads with large variations and the systems with nonlinear damping behavior. It is also applicable for the structures with lots of degrees of freedom, and can handle general nonlinear dynamic systems. By comparing the presented scheme with the fourth-order Runge–Kutta and the Newmark algorithms, it is concluded that the new strategy is more stable. The authors’ formulations have good results on amplitude decay and dispersion error analyses. Moreover, the family orders of accuracy are [Formula: see text] and [Formula: see text] for even and odd values of [Formula: see text], respectively. Findings demonstrate the superiority of the new family compared to explicit and implicit methods and dissipative and non-dissipative algorithms.


Geophysics ◽  
2021 ◽  
pp. 1-71
Author(s):  
Hongwei Liu ◽  
Yi Luo

The finite-difference solution of the second-order acoustic wave equation is a fundamental algorithm in seismic exploration for seismic forward modeling, imaging, and inversion. Unlike the standard explicit finite difference (EFD) methods that usually suffer from the so-called "saturation effect", the implicit FD methods can obtain much higher accuracy with relatively short operator length. Unfortunately, these implicit methods are not widely used because band matrices need to be solved implicitly, which is not suitable for most high-performance computer architectures. We introduce an explicit method to overcome this limitation by applying explicit causal and anti-causal integrations. We can prove that the explicit solution is equivalent to the traditional implicit LU decomposition method in analytical and numerical ways. In addition, we also compare the accuracy of the new methods with the traditional EFD methods up to 32nd order, and numerical results indicate that the new method is more accurate. In terms of the computational cost, the newly proposed method is standard 8th order EFD plus two causal and anti-causal integrations, which can be applied recursively, and no extra memory is needed. In summary, compared to the standard EFD methods, the new method has a spectral-like accuracy; compared to the traditional LU-decomposition implicit methods, the new method is explicit. It is more suitable for high-performance computing without losing any accuracy.


2015 ◽  
Vol 217 (1) ◽  
pp. 9 ◽  
Author(s):  
Nathaniel Roth ◽  
Daniel Kasen

Sign in / Sign up

Export Citation Format

Share Document