Monitoring Strategies of Displacements and Vibration Frequencies by Ground-Based Radar Interferometry

Author(s):  
Giovanni Nico ◽  
Giuseppina Prezioso ◽  
Olimpia Masci ◽  
Yuta Izumi
Sensors ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 244 ◽  
Author(s):  
Andrea Di Pasquale ◽  
Giovanni Nico ◽  
Alfredo Pitullo ◽  
Giuseppina Prezioso

2020 ◽  
Vol 12 (7) ◽  
pp. 1211
Author(s):  
Giovanni Nico ◽  
Giuseppina Prezioso ◽  
Olimpia Masci ◽  
Serena Artese

This work presents a methodology to monitor the dynamic behaviour of tall metallic towers based on ground-based radar interferometry, and apply it to the case of telecommunication towers. Ground-based radar displacement measurements of metallic towers are acquired without installing any Corner Reflector (CR) on the structure. Each structural element of the tower is identified based on its range distance with respect to the radar. The interferometric processing of a time series of radar profiles is used to measure the vibration frequencies of each structural element and estimate the amplitude of its oscillation. A methodology is described to visualize the results and provide a useful tool for the real-time analysis of the dynamic behaviour of metallic towers.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 721-727 ◽  
Author(s):  
J. Pintér ◽  
L. Somlyódy

A conceptual framework is presented for optimizing the operation of regional monitoring networks which assist water quality management. The primary objective of the studied network is to determine the annual nutrient load carried into a lake by its tributaries. Following the description of the basic (single time–period, single water quality indicator) model, several extension possibilities and computational aspects are highlighted. The suggested methodology is illustrated by a numerical example, concerning the surveillance system on the tributaries of Lake Balaton (Hungary).


2001 ◽  
Vol 711 ◽  
Author(s):  
Octavio Gomez-Martinez ◽  
Daniel H. Aguilar ◽  
Patricia Quintana ◽  
Juan J. Alvarado-Gil ◽  
Dalila Aldana ◽  
...  

ABSTRACTFourier Transform infrared spectroscopy has been employed to study the shells of two kind of mollusks, American oysters (Crassostrea virginica) and mussels (Ischadium recurvum). It is shown that it is possible to distinguish the different calcium carbonate lattice vibrations in each case, mussel shells present aragonite vibration frequencies, and the oyster shells present those corresponding to calcite. The superposition, shift and broadening of the infrared bands are discussed. Changes in the vibration modes due to successive thermal treatments are also reported.


2021 ◽  
Vol 13 (11) ◽  
pp. 2173
Author(s):  
Kamil Kowalczyk ◽  
Katarzyna Pajak ◽  
Beata Wieczorek ◽  
Bartosz Naumowicz

The main aim of the article was to analyse the actual accuracy of determining the vertical movements of the Earth’s crust (VMEC) based on time series made of four measurement techniques: satellite altimetry (SA), tide gauges (TG), fixed GNSS stations and radar interferometry. A relatively new issue is the use of the persistent scatterer InSAR (PSInSAR) time series to determine VMEC. To compare the PSInSAR results with GNSS, an innovative procedure was developed: the workflow of determining the value of VMEC velocities in GNSS stations based on InSAR data. In our article, we have compiled 110 interferograms for ascending satellites and 111 interferograms for descending satellites along the European coast for each of the selected 27 GNSS stations, which is over 5000 interferograms. This allowed us to create time series of unprecedented time, very similar to the time resolution of time series from GNSS stations. As a result, we found that the obtained accuracies of the VMEC determined from the PSInSAR are similar to those obtained from the GNSS time series. We have shown that the VMEC around GNSS stations determined by other techniques are not the same.


ACS Nano ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1833-1840
Author(s):  
Kuai Yu ◽  
Yang Yang ◽  
Junzhong Wang ◽  
Gregory V. Hartland ◽  
Guo Ping Wang

Sign in / Sign up

Export Citation Format

Share Document