Digitalization of the Oil and Gas Industry: Practical Lessons Learned from Digital Responses During the First Stage of the COVID-19 Outbreak

Author(s):  
Trung Nguyen ◽  
Raymond G. Gosine ◽  
Peter Warrian
2021 ◽  
Vol 73 (08) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201272, “Lessons Learned in Developing Human Capital for the Oil and Gas Industry in Kazakhstan,” by Zhassulan Dairov, SPE, KIMEP University and Satbayev University; Murat Syzdykov, SPE, Satbayev University; and Jennifer Miskimins, SPE, Colorado School of Mines, prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. The World Economic Forum’s (WEF) Human Capital initiative has been implemented at Satbayev University (SU), Almaty, Kazakhstan, during the last 2 years. Participating in this effort are Chevron, Eni, Shell, and the Colorado School of Mines (Mines). The complete paper assesses the effectiveness of project components, such as industry guest lectures, summer internships, and program improvement, and provides lessons learned for human-resource-development initiatives. Introduction In most cases, the industry/ university alliance is intermittent, short-term, and underdeveloped. The engagement of three stakeholders, such as government, industry, and the university, is the most-successful model of joint performance. This approach allows all participants to create competitive advantages in the achievement of common objectives. Moreover, the role of governmental agencies is critical alongside professional organizations in facilitating such cooperation.


Author(s):  
Warren Brown ◽  
Geoff Evans ◽  
Lorna Carpenter

Over the course of the past 20 years, methods have been developed for assessing the probability and root cause of bolted joint leakage based on sound engineering assessment techniques. Those methods were incorporated, in part, into ASME PCC-1-2010 Appendix O [7] and provide the only published standard method for establishing bolted joint assembly bolt load. As detailed in previous papers, the method can also be used for troubleshooting joint leakage. This paper addresses a series of actual joint leakage cases, outlines the analysis performed to determine root cause of failure and the actions taken to successfully eliminate future incidents of failure (lessons learned).


Author(s):  
Carlo De Bernardi

Abstract The API 20S Standard is designed to play a crucial role in leveraging Additive Manufacturing (AM) to foster innovation in the oil and gas industry. The paper, in association with the standard, will facilitate the understanding of how AM will enable equipment design improvements, faster prototyping, and better inventory management. By way of discussing the progress, challenges, and lessons learned from the standardization process, the paper aims to encourage a safer, broader, and faster adoption of AM technologies in the mainstream oil and gas applications. The paper will summarize the streamlining process, feedback from the API 20S task group, and current status of the standardization efforts. Additionally, upcoming challenges and the potential for the oil and gas industry industries to contribute to the standard will be summarized. The paper will also showcase a novel tiered approach (Additive Manufacturing Specification Levels) to allow the users of the document to match different levels of criticality.


2021 ◽  
Author(s):  
Jean-Francois Gauthier

Abstract Satellites are a powerful tool in monitoring methane emissions around the world. In the last five years, many new systems have been both announced and deployed, each with different capabilities and designed for a specific purpose. With an increase in options also comes confusion as to how these systems can and should be used, especially in meeting the needs of the oil and gas industry. This paper will examine the different satellite systems available and explain what information they are best suited to provide. The performance parameters of several current and future satellite systems will be presented and supported with recent examples when available. For example, the importance of factors like frequency of revisit, detection threshold, and spatial resolution will be discussed and contrasted with the needs of the oil and gas industry in gaining a more complete understanding of its methane emissions and enabling action to mitigate them. Results from GHGSat's second generation of high-resolution satellites displaying measurements of methane plumes at oil and gas facilities around the world will be presented to demonstrate some of the advantages of the technology. These two satellites, GHGSat-C1 and C2 (Iris and Hugo), were launched in September 2020 and January 2021 respectively and have started delivering a tenfold improvement in performance after incorporating the lessons learned from their predecessor, GHGSat's demonstration satellite Claire. Finally, the ability of these systems to work together and complement each other's capabilities to provide actionable insight to the oil and gas industry will be discussed.


Author(s):  
Adam Pecush ◽  
Mark McTavish ◽  
Brian Ellestad

To serve the pumping and storage needs of its customers; Enbridge operates more than 25 terminals and 150 pump stations across North America. In each of these facilities, small diameter (NPS 6 and smaller) piping is used in auxiliary systems including instrumentation, measurement, and product re-injection. Traditionally, in the design of facilities, this small piping has received less attention than large diameter process lines and, during construction, has typically been field run based on standard installation details. This, in conjunction with 65 years of changing design and construction philosophies, as well as asset acquisitions, has resulted in a wide variety of installation configurations across the Enbridge liquids system. The Small Diameter Piping Program in the Facilities Integrity group centrally manages the integrity of all small diameter auxiliary piping across the Enbridge liquids system. Historically, the management and remediation of small diameter systems has been based on addressing specific installation types identified through incident investigations. While generally effective at minimizing re-occurrence, this approach has been limited in its ability to proactively identify installations that should be addressed. In support of our goal of zero incidents, Enbridge has developed a proactive methodology for the inspection and prioritization of small diameter auxiliary piping. Installation types are evaluated on their susceptibility to specific damage mechanisms. An inspection and prioritization model was developed through the combination of internal lessons learned and prioritization methodologies outlined in industry publications, specifically those from the overseas oil and gas industry. This model, sets a standardized process to assign a likelihood of failure (LOF) score to individual small diameter installations of specific types and/or functions. Presently, likelihood of failure scores are used to identify installations requiring remediation, and to most effectively prioritize system-wide remediation activities. Over time, these scores will also be used to demonstrate an overall reduction in the likelihood of failure for small diameter piping in the Enbridge liquids pipeline system.


2003 ◽  
Vol 43 (1) ◽  
pp. 779
Author(s):  
K. Heiden

This paper provides a brief overview of the Environment Protection and Biodiversity Conservation Act 1999 (the Act) with respect to the upstream petroleum industry and focusses on the aspects of assessments and approvals under the Act.The inception of the Act on 16 July 2000 has created a new environmental assessment and approval regime at the Commonwealth level. No longer are proposals referred for assessment on the basis of government decisions, but on the basis of the potential for a proposal to impact upon a matter of National Environmental Significance (NES). Examining the statistics of referrals made, controlled actions determined and approvals granted, provides a useful guide as to the types of activities that are captured by the Act. This exercise is particularly valuable for the oil and gas sector.With more than 20 of the referrals received from the petroleum sector being determined to be controlled actions (that is, actions that are likely to have a significant impact upon matters of NES), a review of the assessment and approval processes under the Act provides some useful insights into what factors to consider when seeking approval under the Act. In particular, information on the timeframes involved, extent of information required, form and scope of approval conditions and synergies with other approval requirements provide valuable insights to proponents and can assist in planning future activities in a manner that is consistent with both the requirements of the Act and those of the proposed action.This paper identifies key issues and lessons for proponents when seeking approval under the Act and also identifies areas where industry can work closely with the Commonwealth Government in ways to achieve a balance between environmental protection and the continued development of the oil and gas industry.


2017 ◽  
Author(s):  
A. Abdullah ◽  
E. Wild ◽  
S. Boladeras ◽  
H. Murphy ◽  
R. Collacott

Sign in / Sign up

Export Citation Format

Share Document