State of the Art in Artificial Intelligence and Machine Learning Techniques for Improving Patient Outcomes Pertaining to the Cardiovascular and Respiratory Systems

2021 ◽  
pp. 335-352
Author(s):  
Wan-Tai M. Au-Yeung ◽  
Rahul Kumar Sevakula ◽  
Jagmeet P. Singh ◽  
E. Kevin Heist ◽  
Eric M. Isselbacher ◽  
...  
Author(s):  
Rahul Kumar Sevakula ◽  
Wan‐Tai M. Au‐Yeung ◽  
Jagmeet P. Singh ◽  
E. Kevin Heist ◽  
Eric M. Isselbacher ◽  
...  

Author(s):  
Luis Felipe Borja ◽  
Jorge Azorin-Lopez ◽  
Marcelo Saval-Calvo

The human behaviour analysis has been a subject of study in various fields of science (e.g. sociology, psychology, computer science). Specifically, the automated understanding of the behaviour of both individuals and groups remains a very challenging problem from the sensor systems to artificial intelligence techniques. Being aware of the extent of the topic, the objective of this paper is to review the state of the art focusing on machine learning techniques and computer vision as sensor system to the artificial intelligence techniques. Moreover, a lack of review comparing the level of abstraction in terms of activities duration is found in the literature. In this paper, a review of the methods and techniques based on machine learning to classify group behaviour in sequence of images is presented. The review takes into account the different levels of understanding and the number of people in the group.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4776
Author(s):  
Seyed Mahdi Miraftabzadeh ◽  
Michela Longo ◽  
Federica Foiadelli ◽  
Marco Pasetti ◽  
Raul Igual

The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models.


Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


Author(s):  
Navjot Singh ◽  
Amarjot Kaur

The objective of the present chapter is to highlight applications of machine learning and artificial intelligence (AI) in clinical diagnosis of neurodevelopmental disorders. The proposed approach aims at recognizing behavioral traits and other cognitive aspects. The availability of numerous data and high processing power, such as graphic processing units (GPUs) or cloud computing, enabled the study of micro-patterns hundreds of times faster compared to manual analysis. AI, being a new technological breakthrough, enables study of human behavior patterns, which are hidden in millions of micro-patterns originating from human actions, reactions, and gestures. The chapter will also focus on the challenges in existing machine learning techniques and the best possible solution addressing those problems. In the future, more AI-based expert systems can enhance the accuracy of the diagnosis and prognosis process.


Sign in / Sign up

Export Citation Format

Share Document