Determining the Role of Leaf Relative Water Content and Soil Cation Exchange Capacity in Phytoextraction Process: Using Regression Modelling

Author(s):  
Akash Mishra ◽  
Bindhu Lal
2017 ◽  
Vol 135 ◽  
pp. 242-251 ◽  
Author(s):  
Jalal Shiri ◽  
Ali Keshavarzi ◽  
Ozgur Kisi ◽  
Ursula Iturraran-Viveros ◽  
Ali Bagherzadeh ◽  
...  

Author(s):  
Erum F H Kazi ◽  
Dr. Satish Kulkarni

Air pollution is one of major concerns in Pune City currently. Study highlights increase in Particulate matter from Vehicular sources & Urbanization in Karaj area is having harmful impact on the trees in the area. Leaf of Plant species such as Peepal( Ficusreligiosa),, Tamarind(Tamarindusindica), Rain tree( Samaneasaman), Ashoka( Saracaasoca), Manago( Mangiferaindica), Almond( Terminaliacatappa) , Banyan tree(Ficusbenghalensis) were selected and it was found that Ashoka( Saracaasoca), Mango tree( Mangiferaindica) showed Intermediate APTI whereas Peepal, Tamarind, Rain tree, Almond, Banyan tree were found to be Sensitive to pollution. KEYWORDS: Air Pollutants, APTI of plants, Total Chlorophyll, Ascorbic acid, p H of leaf, Relative water Content ( RWC)


1997 ◽  
Vol 24 (1) ◽  
pp. 49 ◽  
Author(s):  
K. M. Volkmar

This experiment as undertaken to determine the efects of soil drying around the nodal and/or seminal root systems on the shoot growth of wheat (Triticum aestivum L.). Two split-root experiments were conducted, the first on newly emerged nodal roots of 18-day-old wheat plants, the second on 25-day-old plants. In both experiments, nodal and seminal roots were isolated from one another and water was withheld from either the nodal root chamber, the seminal root chamber, or both, over 6 days. In the first experiment, leaf growth was unaffected by withholding water from very short nodal roots, even though leaf relative water content of the droughted plants decreased. By comparison, both leaf elongation rate and relative water content decreased by withholding water from the seminal roots. On plants that were 1 week older, leaf growth rate and leaf relative water content decreased when nodal roots were drought-stressed. Leaf growth rate of seminal root droughted plants was more impaired than their nodal root counterparts, even though leaf relative water contents of the two treatments were the same. In both experiments, drought stress applied to the nodal root system enhanced nodal root growth more than seminal roots. These results suggest that seminal and nodal roots perceive and respond to drought stress differently with respect to the nature of the message conveyed to the shoots.


1971 ◽  
Vol 51 (3) ◽  
pp. 405-410
Author(s):  
A. K. Ballantyne

Leaching a silt loam soil (cation exchange capacity 23 meq/100 g) with water containing increasing rates of potassium dust (KCl) indicated that high levels adversely affected germination and yields of wheat as well as response to fertilizer. Germination was greatly reduced by the treatment with 22.4 metric tons per hectare and nearly eliminated by 44.8 tons. The 44.8-ton/ha treatment also greatly reduced the yield of grain, but straw weights were affected very little by increasing rates of potassium dust. Response to fertilizer was also reduced by 22.4 and 44.8 tons. The exchangeable Ca and Mg decreased and K increased as increasing amounts of K dust were leached through the soil. The 44.8-ton treatment decreased the exchangeable Ca from 56.0 to 24.9% and the Mg from 21.2 to 4.9%, and increased the K from 7.2 to 51.9%. It would appear that K salts can be added to the soil, without any adverse effects, until the exchangeable K is increased to about 30%. With the soil under study this took more than 11.2 tons per ha (5 short tons/acre). The application of dolomite ameliorated the effect of excess K.


Sign in / Sign up

Export Citation Format

Share Document