Application of Single Cell Technology in Colorectal Cancer

Author(s):  
Begum Dariya ◽  
Ganji Purnachandra Nagaraju
Author(s):  
Bas Ponsioen ◽  
Jasmin B. Post ◽  
Julian R. Buissant des Amorie ◽  
Dimitrios Laskaris ◽  
Ravian L. van Ineveld ◽  
...  

2021 ◽  
Vol 8 (8) ◽  
pp. 2004320
Author(s):  
Hua Wang ◽  
Peng Gong ◽  
Tong Chen ◽  
Shan Gao ◽  
Zhenfeng Wu ◽  
...  

2021 ◽  
Author(s):  
Yannik Bollen ◽  
Ellen Stelloo ◽  
Petra van Leenen ◽  
Myrna van den Bos ◽  
Bas Ponsioen ◽  
...  

AbstractCentral to tumor evolution is the generation of genetic diversity. However, the extent and patterns by which de novo karyotype alterations emerge and propagate within human tumors are not well understood, especially at single-cell resolution. Here, we present 3D Live-Seq—a protocol that integrates live-cell imaging of tumor organoid outgrowth and whole-genome sequencing of each imaged cell to reconstruct evolving tumor cell karyotypes across consecutive cell generations. Using patient-derived colorectal cancer organoids and fresh tumor biopsies, we demonstrate that karyotype alterations of varying complexity are prevalent and can arise within a few cell generations. Sub-chromosomal acentric fragments were prone to replication and collective missegregation across consecutive cell divisions. In contrast, gross genome-wide karyotype alterations were generated in a single erroneous cell division, providing support that aneuploid tumor genomes can evolve via punctuated evolution. Mapping the temporal dynamics and patterns of karyotype diversification in cancer enables reconstructions of evolutionary paths to malignant fitness.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xi Yang ◽  
Quan Qi ◽  
Yuefen Pan ◽  
Qing Zhou ◽  
Yinhang Wu ◽  
...  

ObjectiveThis study aimed to characterize the tumor-infiltrating T cells in moderately differentiated colorectal cancer.MethodsUsing single-cell RNA sequencing data of isolated 1632 T cells from tumor tissue and 1252 T cells from the peripheral blood of CRC patients, unsupervised clustering analysis was performed to identify functionally distinct T cell populations, followed by correlations and ligand-receptor interactions across cell types. Finally, differential analysis of the tumor-infiltrating T cells between colon cancer and rectal cancer were carried out.ResultsA total of eight distinct T cell populations were identified from tumor tissue. Tumor-Treg showed a strong correlation with Th17 cells. CD8+TRM was positively correlated with CD8+IEL. Seven distinct T cell populations were identified from peripheral blood. There was a strong correlation between CD4+TN and CD4+blood-TCM. Colon cancer and rectal cancer showed differences in the composition of tumor-infiltrating T cell populations. Tumor-infiltrating CD8+IEL cells were found in rectal cancer but not in colon cancer, while CD8+ TN cells were found in the peripheral blood of colon cancer but not in that of rectal cancer. A larger number of tumor-infiltrating CD8+ Tex (88.94%) cells were found in the colon cancer than in the rectal cancer (11.06%). The T cells of the colon and rectal cancers showed changes in gene expression pattern.ConclusionsWe characterized the T cell populations in the CRC tumor tissue and peripheral blood.


2021 ◽  
pp. candisc.0316.2021
Author(s):  
Yingcheng Wu ◽  
Shuaixi Yang ◽  
Jiaqiang Ma ◽  
Zechuan Chen ◽  
Guohe Song ◽  
...  

2019 ◽  
Vol 97 (3) ◽  
pp. 241-243
Author(s):  
Tapio Lönnberg ◽  
Michael JT Stubbington

Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1387-1388 ◽  
Author(s):  
Margaret A. Goodell ◽  
David M. Bodine
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document