A Study for Determination of the Pressure Ratio of the V12 Diesel Engine Based on the Heat Flow Density to Cooling Water

Author(s):  
Kien.Nguyen Trung
2016 ◽  
Vol 46 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Dušan Majcin ◽  
Roman Kutas ◽  
Dušan Bilčík ◽  
Vladimír Bezák ◽  
Ignat Korchagin

Abstract The contribution presents the results acquired both by direct cognitive geothermic methods and by modelling approaches of the lithosphere thermal state in the region of the Transcarpathian depression and surrounding units. The activities were aimed at the determination of the temperature field distribution and heat flow density distribution in the upper parts of the Earth’s crust within the studied area. Primary new terrestrial heat flow density map was constructed from values determined for boreholes, from their interpretations and from newest outcomes of geothermal modelling methods based on steady-state and transient approaches, and also from other recently gained geophysical and geological knowledge. Thereafter we constructed the maps of temperature field distribution for selected depth levels of up to 5000 m below the surface. For the construction we have used measured borehole temperature data, the interpolation and extrapolation methods, and the modelling results of the refraction effects and of the influences of source type anomalies. New maps and other geothermic data served for the determination of depths with rock temperatures suitable for energy utilization namely production of electric energy minimally by the binary cycles. Consequently the thermal conditions were used to identify the most perspective areas for geothermal energy exploitation in the region under study.


2017 ◽  
Vol 47 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Dušan Majcin ◽  
Miroslav Král ◽  
Dušan Bilčík ◽  
Martin Šujan ◽  
Andrea Vranovská

AbstractThe contribution presents the results of geothermic interpretation approaches applied to measured geothermal data and is focused to determination of the thermal conditions both for application of classic hydrothermal sources exploitation and specialized EGS technologies for electricity production in the region of Slovakia and adjacent areas. Primarily, the heat flow density data and the temperature distribution measurements in boreholes were interpreted by classic 1D interpolation and extrapolation methods. New terrestrial heat flow density map for the studied area was constructed using the values determined in boreholes, their interpretations, the newest outcomes of geothermal modelling methods based both on steady-state and transient heat transfer approaches, and on other recently gained geoscientific knowledge. Thereafter, we constructed the maps of temperature field distribution for selected depth levels up to 6000 m below the surface and the final map of the isothermal surface depths for the reservoir temperature of 160 ◦ C. This final map serves for the appraisal of the effective application of the binary cycle power plant technology in Slovakia in terms of thermal conditions.


2018 ◽  
Vol 4 (2) ◽  
pp. 45
Author(s):  
Janilo Santos ◽  
Valiya M. Hamza ◽  
Po-Yu Shen

ABSTRACT. A simple method for measurement of terrestrial heat flow density in wells drawing groundwater from confined aquifers is presented. It requires laboratory determination of thermal resistance but the field work is simple, being limited to measurement of temperature of water at the well mouth during pumping tests.The aquifer temperature (Ta) is calculated from the measured temperature at the well mouth (Tw), the mass flow rate (M) and the depth to the top of the aquifer (H) using the relation(Tw – To) / (Ta – To) = M'R [1 – exp(–1/M'R)]where To is the mean annual surface temperature, R a dimensionless diffusion parameter and M' = MC/KH is the dimensionless mass flow rate, C being the specific heat of water and K the thermal conductivity of the rock formation penetrated by the well. The heat flow density (q) is then calculated from the relationq = (Ta –To) / ∑ n (i=1) Pi Zjwhere Pi is the thermal resistivity of the jth layer of thickness Zi and n the number of layers. The procedure also allow corrections for the influence of thermal conductivity variations oi the wall rocks.This method was used for the determination of heat flow density values for thirteen sites in the northeastern part of the Paraná basin. The mean value obtained is 62±4 mW/m2 in good agreement with the mean of 59±9 mW/m2 obtained by the conventional method for thirteen sites in the Paraná basin. Though similar in principle to the bottom-hole temperature method used in oil wells, the present technique has some inherent advantages. lt is potentially capable of providing a wider geographic representation of heat flow density (being not limited to petroleum fields) and is relatively free of the sampling problems normally encountered in working with oil companies. 0n the other hand the present method may provide unreliable values in the case of wells drawing water from more than one aquifer. RESUMO. Apresenta-se neste trabalho, um método simples para a determinação do fluxo geotérmico em poços em atividade de bombeamento de água subterrânea. O método requer a determinação em laboratório da resistência térmica total das camadas atravessadas pelo poço mas, o trabalho de campo é simples, limitando-se à medida da temperatura da água na boca do poço durante ensaios de bombeamento.A temperatura do aquífero (Ta) é calculada a partir da temperatura da água (TW), medida na boca do poço da vazão (M) expressa em massa  de água produzida pelo poço por unidade de tempo e, da profundidade do topo do aquífero (H) usando-se a relação(Tw – To) / (Ta – To) = M'R [1 – exp(–1/M'R)]onde TO é a temperatura média anual da superfície, R é um parâmetro adimensional de difusão, M' = M C/K H é a vazão adimensional do poço, C é o calor específico da água e, K é a condutividade térmica da rocha atravessada pelo poço. O fluxo geotérmico (q) é calculado pela relaçãoq = (Ta –To) / ∑ n (i=1) Pi Zjonde Pi é a resistência térmica da i-ésima camada de espessura Zi e, n é o número de camadas.O método permite também a introdução de correções da influência das variações de condutividade térmica das paredes do poço.Este método foi utilizado na determinação do fluxo geotérmico em treze localidades no nordeste da Bacia do Paraná. O valor médio obtido foi de 62±4 mW /m2 concordando com o valor médio de 59±9 mW/m2 obtido pelo método convencional de determinação de fluxo geotérmico em treze localidades da Bacia do Paraná. Apesar de ser um método similar ao das temperaturas de fundo de poço usado em poços de petróleo, esta técnica apresenta algumas vantagens. O método é potencialmente capaz de fornecer uma representação geográfica mais ampla do fluxo geotérmico, não estando limitado a campos de produção de petróleo, e é relativamente livre de problemas de amostragem normalmente encontrados quando se trabalha com companhias de petróleo. Por outro lado, este método pode fornecer valores irreais de fluxo geotérmico no caso em que o poço extraia água de mais de um aquífero. 


2021 ◽  
Vol 2 (1) ◽  
pp. 38-43
Author(s):  
Elena A. Glukhova ◽  
Pavel I. Safronov ◽  
Lev M. Burshtein

The article presents the one-dimensional basin modeling performed in four wells to reconstruct the thermal history of deposits and reconstruct the effective values of the heat flow density.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Pauline Harlé ◽  
Alexandra R. L. Kushnir ◽  
Coralie Aichholzer ◽  
Michael J. Heap ◽  
Régis Hehn ◽  
...  

AbstractThe Upper Rhine Graben (URG) has been extensively studied for geothermal exploitation over the past decades. Yet, the thermal conductivity of the sedimentary cover is still poorly constrained, limiting our ability to provide robust heat flow density estimates. To improve our understanding of heat flow density in the URG, we present a new large thermal conductivity database for sedimentary rocks collected at outcrops in the area including measurements on (1) dry rocks at ambient temperature (dry); (2) dry rocks at high temperature (hot) and (3) water-saturated rocks at ambient temperature (wet). These measurements, covering the various lithologies composing the sedimentary sequence, are associated with equilibrium-temperature profiles measured in the Soultz-sous-Forêts wells and in the GRT-1 borehole (Rittershoffen) (all in France). Heat flow density values considering the various experimental thermal conductivity conditions were obtained for different depth intervals in the wells along with average values for the whole boreholes. The results agree with the previous heat flow density estimates based on dry rocks but more importantly highlight that accounting for the effect of temperature and water saturation of the formations is crucial to providing accurate heat flow density estimates in a sedimentary basin. For Soultz-sous-Forêts, we calculate average conductive heat flow density to be 127 mW/m2 when considering hot rocks and 184 mW/m2 for wet rocks. Heat flow density in the GRT-1 well is estimated at 109 and 164 mW/m2 for hot and wet rocks, respectively. Results from the Rittershoffen well suggest that heat flow density is nearly constant with depth, contrary to the observations for the Soultz-sous-Forêts site. Our results show a positive heat flow density anomaly in the Jurassic formations, which could be explained by a combined effect of a higher radiogenic heat production in the Jurassic sediments and thermal disturbance caused by the presence of the major faults close to the Soultz-sous-Forêts geothermal site. Although additional data are required to improve these estimates and our understanding of the thermal processes, we consider the heat flow densities estimated herein as the most reliable currently available for the URG.


Author(s):  
W. G. Powell ◽  
D. S. Chapman ◽  
N. Balling ◽  
A. E. Beck

Geothermics ◽  
1998 ◽  
Vol 27 (4) ◽  
pp. 469-484 ◽  
Author(s):  
Gennaro Corrado ◽  
Salvatore De Lorenzo ◽  
Francesco Mongelli ◽  
Antonio Tramacere ◽  
Gianmaria Zito

1984 ◽  
Vol 103 (1-4) ◽  
pp. 283-296 ◽  
Author(s):  
V. čermák ◽  
M. Krešl ◽  
J. Šafanda ◽  
M. Nápoles-Pruna ◽  
R. Tenreyro-Perez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document