Spreading Time of Liquid Droplets Impacting on Non-wetting Solid Surfaces

Author(s):  
Yang Xu ◽  
Stéphane Vincent ◽  
Q.-C. He ◽  
H. Le-Quang
2001 ◽  
Vol 13 (3) ◽  
pp. 643-659 ◽  
Author(s):  
H.-Y. Kim ◽  
J.-H. Chun

RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 23954-23960 ◽  
Author(s):  
Guiping Zhu ◽  
Hui Fan ◽  
Hulin Huang ◽  
Fei Duan

The motion and coalescence of sessile liquid droplets on patterned solid surfaces are investigated systematically in terms of the liquid and substrate surface properties.


Author(s):  
C. Mathew Mate ◽  
Robert W. Carpick

The energies associated with surfaces—surface energy, interfacial energy, surface tension, and work of adhesion—drive many surface and interfacial phenomena including tribological ones such as adhesion and friction. This chapter discusses the physical origins of surface energies for liquids and solids, and how the concepts of capillary pressure, capillary condensation, wetting, and work of adhesion are derived from surface energy. Further, this chapter covers the different methods for measuring surface energies, including the most common method for solid surfaces: contact angle measurements of liquid droplets on surfaces. This chapter also introduces how surface energies and surface tensions lead to adhesion and adhesion hysteresis between contacting surfaces, which is followed up in the subsequent chapters on surface forces.


1952 ◽  
Vol 5 (4) ◽  
pp. 618
Author(s):  
RG Wylie

In order to calculate the probabilities of nucleation of liquid droplets at different types of site on a solid surface, the properties of embryonic droplets which may exist in complete thermodynamic equilibrium at those sites must be known. The general properties of liquid embryos formed on a plane solid surface, or at lines or points of intersection of plane solid surfaces, are considered. It is shown that, although an edge free energy associated with the boundary line may substantially affect the properties -of embryos at small contact angles, the effect is probably not large, for embryos of the sizes of interest, when the contact angle is larger than about π/4. The areas, volumes, total surface free energies, and free energies of formation are found for embryos at these sites as functions of the contact angle, any edge free energies being neglected. The extension to the formation of bubbles at plane solid surfaces in a pure liquid is indicated. The results are applied in a following paper to the kinetics of condensation of a vapour at an imperfect crystalline surface.


Author(s):  
A-S Yang ◽  
M-T Yang ◽  
M-C Hong

The impinging behaviour of liquid droplets on solid surfaces is studied using a computational approach. The analysis comprises the unsteady three-dimensional conservation equations of mass and momentum, with the surface tension effect treated by the continuous surface force model. Gas-liquid interfacial motions are simulated by the volume-of-fluid method in conjunction with the piecewise linear interface construction technique. In the computer code validation for a water droplet impacting on a polished stainless steel surface, computer-generated images of the time evolution of the droplet impingement dispersal shape are compared with magnified photographs by Pasandideh-Fard et al. The flow and transport phenomena in the impingement flowfield are further examined in detail. In order to respond to the need for its use in practical applications, the study is extended to explore the spreading progression to achieve a better understanding of the interaction of a 30 μm diameter polyethylenedioxy thiophene liquid droplet with a 50 × 50 μm indium tin oxide-coating square cavity at an impact velocity of 6 m/s.


Sign in / Sign up

Export Citation Format

Share Document