The MLPG Method in Multiphysics and Scale Dependent Problems

Author(s):  
Jan Sladek ◽  
Vladimir Sladek ◽  
Miroslav Repka
Keyword(s):  
2019 ◽  
Vol 24 (4) ◽  
pp. 101
Author(s):  
A. Karami ◽  
Saeid Abbasbandy ◽  
E. Shivanian

In this paper, we study the meshless local Petrov–Galerkin (MLPG) method based on the moving least squares (MLS) approximation for finding a numerical solution to the Stefan free boundary problem. Approximation of this problem, due to the moving boundary, is difficult. To overcome this difficulty, the problem is converted to a fixed boundary problem in which it consists of an inverse and nonlinear problem. In other words, the aim is to determine the temperature distribution and free boundary. The MLPG method using the MLS approximation is formulated to produce the shape functions. The MLS approximation plays an important role in the convergence and stability of the method. Heaviside step function is used as the test function in each local quadrature. For the interior nodes, a meshless Galerkin weak form is used while the meshless collocation method is applied to the the boundary nodes. Since MLPG is a truly meshless method, it does not require any background integration cells. In fact, all integrations are performed locally over small sub-domains (local quadrature domains) of regular shapes, such as intervals in one dimension, circles or squares in two dimensions and spheres or cubes in three dimensions. A two-step time discretization method is used to deal with the time derivatives. It is shown that the proposed method is accurate and stable even under a large measurement noise through several numerical experiments.


Author(s):  
Singiresu S. Rao

A meshless local Petrov-Galerkin (MLPG) method is proposed to obtain the numerical solution of nonlinear heat transfer problems. The moving least squares scheme is generalized, to construct the field variable and its derivative continuously over the entire domain. The essential boundary conditions are enforced by the direct scheme. The radiation heat transfer coefficient is defined, and the nonlinear boundary value problem is solved as a sequence of linear problems each time updating the radiation heat transfer coefficient. The matrix formulation is used to drive the equations for a 3 dimensional nonlinear coupled radiation heat transfer problem. By using the MPLG method, along with the linearization of the nonlinear radiation problem, a new numerical approach is proposed to find the solution of the coupled heat transfer problem. A numerical study of the dimensionless size parameters for the quadrature and support domains is conducted to find the most appropriate values to ensure convergence of the nodal temperatures to the correct values quickly. Numerical examples are presented to illustrate the applicability and effectiveness of the proposed methodology for the solution of heat transfer problems involving radiation with different types of boundary conditions. In each case, the results obtained using the MLPG method are compared with those given by the FEM method for validation of the results.


2017 ◽  
Vol 35 (4) ◽  
pp. 721-729 ◽  
Author(s):  
Rajul Garg ◽  
Harishchandra Thakur ◽  
Brajesh Tripathi

2019 ◽  
Vol 36 (4) ◽  
pp. 1323-1345
Author(s):  
Rituraj Singh ◽  
Krishna Mohan Singh

Purpose The purpose of this paper is to assess the performance of the stabilised moving least squares (MLS) scheme in the meshless local Petrov–Galerkin (MLPG) method for heat conduction method. Design/methodology/approach In the current work, the authors extend the stabilised MLS approach to the MLPG method for heat conduction problem. Its performance has been compared with the MLPG method based on the standard MLS and local coordinate MLS. The patch tests of MLS and modified MLS schemes have been presented along with the one- and two-dimensional examples for MLPG method of the heat conduction problem. Findings In the stabilised MLS, the condition number of moment matrix is independent of the nodal spacing and it is nearly constant in the global domain for all grid sizes. The shifted polynomials based MLS and stabilised MLS approaches are more robust than the standard MLS scheme in the MLPG method analysis of heat conduction problems. Originality/value The MLPG method based on the stabilised MLS scheme.


Sign in / Sign up

Export Citation Format

Share Document