The Importance of the Salivary Pellicle

Author(s):  
Matthias Hannig
Keyword(s):  
2021 ◽  
Vol 200 ◽  
pp. 111570
Author(s):  
Nicholas G. Fischer ◽  
Conrado Aparicio
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gabriella Boisen ◽  
Julia R. Davies ◽  
Jessica Neilands

Abstract Background In caries, low pH drives selection and enrichment of acidogenic and aciduric bacteria in oral biofilms, and development of acid tolerance in early colonizers is thought to play a key role in this shift. Since previous studies have focussed on planktonic cells, the effect of biofilm growth as well as the role of a salivary pellicle on this process is largely unknown. We explored acid tolerance and acid tolerance response (ATR) induction in biofilm cells of both clinical and laboratory strains of three oral streptococcal species (Streptococcus gordonii, Streptococcus oralis and Streptococcus mutans) as well as two oral species of Actinomyces (A. naeslundii and A. odontolyticus) and examined the role of salivary proteins in acid tolerance development. Methods Biofilms were formed on surfaces in Ibidi® mini flow cells with or without a coating of salivary proteins and acid tolerance assessed by exposing them to a challenge known to kill non-acid tolerant cells (pH 3.5 for 30 min) followed by staining with LIVE/DEAD BacLight and confocal scanning laser microscopy. The ability to induce an ATR was assessed by exposing the biofilms to an adaptation pH (pH 5.5) for 2 hours prior to the low pH challenge. Results Biofilm formation significantly increased acid tolerance in all the clinical streptococcal strains (P < 0.05) whereas the laboratory strains varied in their response. In biofilms, S. oralis was much more acid tolerant than S. gordonii or S. mutans. A. naeslundii showed a significant increase in acid tolerance in biofilms compared to planktonic cells (P < 0.001) which was not seen for A. odontolyticus. All strains except S. oralis induced an ATR after pre-exposure to pH 5.5 (P < 0.05). The presence of a salivary pellicle enhanced both acid tolerance development and ATR induction in S. gordonii biofilms (P < 0.05) but did not affect the other bacteria to the same extent. Conclusions These findings suggest that factors such as surface contact, the presence of a salivary pellicle and sensing of environmental pH can contribute to the development of high levels of acid tolerance amongst early colonizers in oral biofilms which may be important in the initiation of caries.


2004 ◽  
Vol 841 ◽  
Author(s):  
Michelle E. Dickinson ◽  
Adrian B. Mann

ABSTRACTSalivary pellicle is an organic biofilm formed by the physisorption of proteins and carbohydrates onto the surface of dental enamel exposed to the oral environment. The pellicle has several key roles in oral physiology including lubrication and reduction of friction between teeth during mastication, as well as chemical protection of the enamel against acidic solutions. However, pellicle proteins are known to react with dietary compounds to cause extrinsic staining on the tooth surface.In this study, nanoindentation and AFM have been used in vitro to examine the acquired salivary pellicle formed in vivo on dental enamel. The mechanical properties, growth, structure and morphology of pellicle grown in vivo on human enamel surfaces have been analysed. In addition, the effects of dietary agents such as polyphenols on the pellicle's morphology and properties have been studied.It was found that initial adsorption of proteins on the enamel surface occurred within 30 seconds of exposure to the oral cavity, with full growth achieved within 2 hours. Differences in the properties of the pellicles such as surface adhesion, and time dependent effects due to polyphenol interaction were measured using nanoindentation. It was seen that the polyphenol interaction has a significant effect on these properties. These results suggest that the stained pellicle is mechanically stiffer, but also less viscous and more fluid like. This could explain why traditional tooth brushing techniques do not efficiently remove this layer.


Biofouling ◽  
2003 ◽  
Vol 19 (6) ◽  
pp. 365-369 ◽  
Author(s):  
I Cecilia Hahn Berg ◽  
Mark W Rutland ◽  
Thomas Arnebrant

2020 ◽  
Author(s):  
Xiaodie Wang ◽  
Limin Liu ◽  
Xiaoyan Zhou ◽  
Yongbiao Huo ◽  
Jinlong Gao ◽  
...  

Abstract Background Recent preventive strategies for dental caries focus on targeting the mechanisms underlying biofilm formation, including inhibiting bacterial adhesion. A promising approach to prevent bacterial adhesion is to modify the composition of acquired salivary pellicle. This in vitro study investigated the effect and possible underlying mechanism of pellicle modification by casein phosphopeptide (CPP) on Streptococcus mutans (S. mutans) initial adhesion, and the impact of fluoride on the efficacy of CPP.Methods The salivary pellicle-coated hydroxyapatite (s-HA) disc was modified by 2.5% CPP or 2.5% CPP supplemented with 900 ppm fluoride solutions. After cultivation of S. mutans, the adherent bacteria were visualized by scanning electron microscopy (SEM) and quantitatively evaluated using the plate count method. Confocal laser scanning microscopy (CLSM) was used to evaluate the proportions of total and dead S. mutans. The concentrations of total, free, and bound calcium and fluoride in CPP and fluoride-doped CPP solutions were determined. The water contact angle and zeta potential of s-HA with and without modification were measured. The data were statistically analyzed using one-way ANOVA followed by a Turkey post hoc multiple comparison test.Results Initial adhesion of S. mutans to s-HA was inhibited in response to pellicle modification by CPP and fluoride-doped CPP, and the latter was more efficient. CLSM analysis showed that the proportion of dead S. mutans did not differ between the groups. Water contact angle and zeta potential decreased after pellicle modification, and both were lowest in the fluoride-doped CPP group.Conclusions Pellicle modification by CPP inhibited S. mutans initial adhesion to s-HA, possibly by reducing hydrophobicity and negative charge on the s-HA surface, and incorporating fluoride into CPP enhanced its anti-adhesion effect.


2018 ◽  
Vol 19 (9) ◽  
pp. 2764 ◽  
Author(s):  
Bor-Shiunn Lee ◽  
Yu-Jia Chen ◽  
Ta-Chin Wei ◽  
Tien-Li Ma ◽  
Che-Chen Chang

Although poly(2-hydroxyethyl methacrylate) (pHEMA) and polyethylene glycol methacrylate (PEGMA) have been demonstrated to inhibit bacterial adhesion, no study has compared antibacterial adhesion when salivary pellicle is coated on polymethyl methacrylate (PMMA) grafted with pHEMA and on PMMA grafted with PEGMA. In this study, PMMA discs were fabricated from a commercial orthodontic acrylic resin system (Ortho-Jet). Attenuated total reflection-Fourier transform infrared spectra taken before and after grafting confirmed that pHEMA and PEGMA were successfully grafted on PMMA. Contact angle measurements revealed PMMA-pHEMA to be the most hydrophilic, followed by PMMA-PEGMA, and then by PMMA. Zeta potential analysis revealed the most negative surface charges on PMMA-PEGMA, followed by PMMA-pHEMA, and then by PMMA. Confocal laser scanning microscopy showed green fluorescence in the background, indicating images that influenced the accuracy of the quantification of live bacteria. Both the optical density value measured at 600 nm and single plate-serial dilution spotting showed that pHEMA was more effective than PEGMA against Escherichia coli and Streptococcus mutans, although the difference was not significant. Therefore, the grafting of pHEMA and PEGMA separately on PMMA is effective against bacterial adhesion, even after the grafted PMMA were coated with salivary pellicle. Surface hydrophilicity, bactericidality, and Coulomb repulsion between the negatively charged bacteria and the grafted surface contributed to the effectiveness.


2020 ◽  
Author(s):  
Xiaodie Wang ◽  
Limin Liu ◽  
Xiaoyan Zhou ◽  
Yongbiao Huo ◽  
Jinlong Gao ◽  
...  

Abstract Background: Recent preventive strategies for dental caries focus on targeting the mechanisms underlying biofilm formation, including inhibiting bacterial adhesion. A promising approach to prevent bacterial adhesion is to modify the composition of acquired salivary pellicle. This in vitro study investigated the effect and possible underlying mechanism of pellicle modification by casein phosphopeptide (CPP) on Streptococcus mutans (S. mutans) initial adhesion, and the impact of fluoride on the efficacy of CPP. Methods: The salivary pellicle-coated hydroxyapatite (s-HA) discs were treated with phosphate buffered saline (blank control), heat-inactivated 2.5% CPP (negative control), 2.5% CPP (CPP) or 2.5% CPP supplemented with 900 ppm fluoride (CPP + F). After cultivation of S. mutans, the adherent bacteria were visualized by scanning electron microscopy (SEM) and quantitatively evaluated using the plate count method. Confocal laser scanning microscopy (CLSM) was used to evaluate the proportions of total and dead S. mutans. The concentrations of total, free, and bound calcium and fluoride in CPP and fluoride-doped CPP solutions were determined. The water contact angle and zeta potential of s-HA with and without modification were measured. The data were statistically analyzed using one-way ANOVA followed by a Turkey post hoc multiple comparison test.Results: Initial adhesion of S. mutans to s-HA was inhibited in response to pellicle modification by CPP and fluoride-doped CPP, and the latter was more efficient. CLSM analysis showed that the proportion of dead S. mutans did not differ between the groups. Water contact angle and zeta potential decreased after pellicle modification, and both were lowest in the CPP + F group. Conclusions: Pellicle modification by CPP inhibited S. mutans initial adhesion to s-HA, possibly by reducing hydrophobicity and negative charge on the s-HA surface, and incorporating fluoride into CPP enhanced its anti-adhesion effect.


2007 ◽  
Vol 77 (6) ◽  
pp. 1090-1095 ◽  
Author(s):  
William Papaioannou ◽  
Sotiria Gizani ◽  
Maria Nassika ◽  
Efterpi Kontou ◽  
Melachrini Nakou

Abstract Objective: To examine the difference in the adhesion of Streptococcus mutans to three different types of orthodontic brackets and the effect of the presence of an early salivary pellicle and Streptococcus sanguis on adhesion. Materials and Methods: Three adhesion experiments were performed using stainless steel, ceramic, and plastic orthodontic brackets. In the first experiment a clinical strain of S mutans adhered to the three different types of brackets (n = 6 for each). For the second, the brackets were treated with saliva before adhesion of S mutans (n = 6 per type of bracket). Finally, the third experiment concerned saliva coated brackets (n = 6 per type of bracket), but before S mutans, S sanguis bacteria were allowed to adhere. The bacteria were always allowed to adhere for 90 minutes in all the experiments. Adhesion was quantitated by a microbial culture technique by treating the brackets with adhering bacteria with trypsin and enumerating the total viable counts of bacteria recovered after cultivation. Results: There were consistently no differences in the adherence to stainless steel, ceramic, or plastic brackets. The presence of an early salivary pellicle and S sanguis reduced the number of adhering S mutans to all three types of brackets. Conclusions: Adhesion of bacteria to orthodontic brackets depends on several factors. The presence of a salivary pellicle and other bacterial species seem to have a significant effect on the adhesion of S mutans, reducing their numbers and further limiting any differences between types of brackets.


2015 ◽  
Vol 30 (3) ◽  
pp. 569-577 ◽  
Author(s):  
Barbara Cvikl ◽  
Adrian Lussi ◽  
Andreas Moritz ◽  
Reinhard Gruber

Sign in / Sign up

Export Citation Format

Share Document