Fused Filament Fabrication for External Medical Devices

Author(s):  
C. P. Paul ◽  
K. Dileep ◽  
A. N. Jinoop ◽  
A. C. Paul ◽  
K. S. Bindra
Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2647
Author(s):  
Roland Told ◽  
Gyula Marada ◽  
Szilard Rendeki ◽  
Attila Pentek ◽  
Balint Nagy ◽  
...  

3D printing is an emerging and disruptive technology, supporting the field of medicine over the past decades. In the recent years, the use of additive manufacturing (AM) has had a strong impact on everyday dental applications. Despite remarkable previous results from interdisciplinary research teams, there is no evidence or recommendation about the proper fabrication of handheld medical devices using desktop 3D printers. The aim of this study was to critically examine and compare the mechanical behavior of materials printed with FFF (fused filament fabrication) and CFR (continuous fiber reinforcement) additive manufacturing technologies, and to create and evaluate a massive and practically usable right upper molar forceps. Flexural and torsion fatigue tests, as well as Shore D measurements, were performed. The tensile strength was also measured in the case of the composite material. The flexural tests revealed the measured force values to have a linear correlation with the bending between the 10 mm (17.06 N at 5000th cycle) and 30 mm (37.99 N at 5000th cycle) deflection range. The findings were supported by scanning electron microscopy (SEM) images. Based on the results of the mechanical and structural tests, a dental forceps was designed, 3D printed using CFR technology, and validated by five dentists using a Likert scale. In addition, the vertical force of extraction was measured using a unique molar tooth model, where the reference test was carried out using a standard metal right upper molar forceps. Surprisingly, the tests revealed there to be no significant differences between the standard (84.80 N ± 16.96 N) and 3D-printed devices (70.30 N ± 4.41 N) in terms of extraction force in the tested range. The results also highlighted that desktop CFR technology is potentially suitable for the production of handheld medical devices that have to withstand high forces and perform load-bearing functions.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 572
Author(s):  
Marion Gradwohl ◽  
Feng Chai ◽  
Julien Payen ◽  
Pierre Guerreschi ◽  
Philippe Marchetti ◽  
...  

Although bioabsorbable polymers have garnered increasing attention because of their potential in tissue engineering applications, to our knowledge there are only a few bioabsorbable 3D printed medical devices on the market thus far. In this study, we assessed the processability of medical grade Poly(lactic-co-glycolic) Acid (PLGA)85:15 via two additive manufacturing technologies: Fused Filament Fabrication (FFF) and Direct Pellet Printing (DPP) to highlight the least destructive technology towards PLGA. To quantify PLGA degradation, its molecular weight (gel permeation chromatography (GPC)) as well as its thermal properties (differential scanning calorimetry (DSC)) were evaluated at each processing step, including sterilization with conventional methods (ethylene oxide, gamma, and beta irradiation). Results show that 3D printing of PLGA on a DPP printer significantly decreased the number-average molecular weight (Mn) to the greatest extent (26% Mn loss, p < 0.0001) as it applies a longer residence time and higher shear stress compared to classic FFF (19% Mn loss, p < 0.0001). Among all sterilization methods tested, ethylene oxide seems to be the most appropriate, as it leads to no significant changes in PLGA properties. After sterilization, all samples were considered to be non-toxic, as cell viability was above 70% compared to the control, indicating that this manufacturing route could be used for the development of bioabsorbable medical devices. Based on our observations, we recommend using FFF printing and ethylene oxide sterilization to produce PLGA medical devices.


Author(s):  
Delma P. Thomas ◽  
Dianne E. Godar

Ultraviolet radiation (UVR) from all three waveband regions of the UV spectrum, UVA (320-400 nm), UVB (290-320 nm), and UVC (200-290 nm), can be emitted by some medical devices and consumer products. Sunlamps can expose the blood to a considerable amount of UVR, particularly UVA and/or UVB. The percent transmission of each waveband through the epidermis to the dermis, which contains blood, increases in the order of increasing wavelength: UVC (10%) < UVB (20%) < UVA (30%). To investigate the effects of UVR on white blood cells, we chose transmission electron microscopy to examine the ultrastructure changes in L5178Y-R murine lymphoma cells.


Author(s):  
B.D. Tall ◽  
K.S. George ◽  
R. T. Gray ◽  
H.N. Williams

Studies of bacterial behavior in many environments have shown that most organisms attach to surfaces, forming communities of microcolonies called biofilms. In contaminated medical devices, biofilms may serve both as reservoirs and as inocula for the initiation of infections. Recently, there has been much concern about the potential of dental units to transmit infections. Because the mechanisms of biofilm formation are ill-defined, we investigated the behavior and formation of a biofilm associated with tubing leading to the water syringe of a dental unit over a period of 1 month.


2005 ◽  
Author(s):  
Carol Rados ◽  
Keyword(s):  

Author(s):  
Jean-David Cohen ◽  
Cyril Crozet ◽  
Jean-François d’Ivernois ◽  
Rémi Gagnayre

Very old studies and clinical experiences of physicians already signal the ability of some patients to feel subclinical signs. These patients are called sentinel patients because they can anticipate crisis very early and therefore intervene quickly to prevent them. Studies have shown that these patients develop these skills from their own experience, in steps which are similar to quasi-experimental research. They test and adjust their competence all the more easily as they have an objective external measure available. This faculty of patients suggests the possibility of using medical devices as a means of learning for patients to tutor themselves in support of this singular skill.


2013 ◽  
Vol 75 (08/09) ◽  
Author(s):  
K van der Linde ◽  
J Wasem ◽  
B Buchberger

2019 ◽  
Author(s):  
Steven Kim ◽  
Alexa Devega ◽  
Mallory Sico ◽  
Hao Wu ◽  
William Fahy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document