Advanced Quantum Approach to Calculation of Probabilities of the Cooperative Electron-γ Vibrational-Nuclear Transitions in Spectra of Diatomics Molecules

Author(s):  
Alexander V. Glushkov ◽  
Eugeny V. Ternovsky ◽  
Valery F. Mansarliysky ◽  
Pavel A. Zaichko
Author(s):  
Jan H. Kwapisz ◽  
Leszek Z. Stolarczyk

AbstractThe equilibrium carbon-carbon (C-C) bond lengths in π-electron hydrocarbons are very sensitive to the electronic ground-state characteristic. In the recent two papers by Stolarczyk and Krygowski (J Phys Org Chem, 34:e4154,e4153, 2021) a simple quantum approach, the Augmented Hückel Molecular Orbital (AugHMO) model, is proposed for the qualitative, as well as quantitative, study of this phenomenon. The simplest realization of the AugHMO model is the Hückel-Su-Schrieffer-Heeger (HSSH) method, in which the resonance integral β of the HMO model is a linear function the bond length. In the present paper, the HSSH method is applied in a study of C-C bond lengths in a set of 34 selected polycyclic aromatic hydrocarbons (PAHs). This is exactly the set of molecules analyzed by Riegel and Müllen (J Phys Org Chem, 23:315, 2010) in the context of their electronic-excitation spectra. These PAHs have been obtained by chemical synthesis, but in most cases no diffraction data (by X-rays or neutrons) of sufficient quality is available to provide us with their geometry. On the other hand, these PAHs are rather big (up to 96 carbon atoms), and ab initio methods of quantum chemistry are too expensive for a reliable geometry optimization. That makes the HSSH method a very attractive alternative. Our HSSH calculations uncover a modular architecture of certain classes of PAHs. For the studied molecules (and their fragments – modules), we calculate the values of the aromaticity index HOMA.


2006 ◽  
Vol 518 ◽  
pp. 485-490 ◽  
Author(s):  
D. Raković ◽  
M. Dugić ◽  
M.B. Plavšić ◽  
G. Keković ◽  
Irena Ćosić ◽  
...  

Our recently proposed quantum approach to biomolecular recognition processes is hereby additionally supported by biomolecular Resonant Recognition Model and by quantum-chemical theory of biomolecular non-radiative resonant transitions. Previously developed general quantumdecoherence framework for biopolymer conformational changes in very selective ligandproteins/ target-receptors key/lock biomolecular recognition processes (with electron-conformational coupling, giving rise to dynamical modification of many-electron energy-state hypersurface of the cellular quantum-ensemble ligand-proteins/target-receptors biomolecular macroscopic quantum system, with revealed possibility to consider cellular biomolecular recognition as a Hopfield-like quantum-holographic associative neural network) is further extended from nonlocal macroscopicquantum level of biological cell to nonlocal macroscopic-quantum level of biological organism, based on long-range coherent microwave excitations (as supported by macroscopic quantum-like microwave resonance therapy of the acupuncture system) - which might be of fundamental importance in understanding of underlying macroscopic quantum (quantum-holographic Hopfieldlike) control mechanisms of embryogenesis/ontogenesis and morphogenesis, and their backward influence on the expression of genes.


2007 ◽  
Vol 50 (12) ◽  
pp. 1231-1233 ◽  
Author(s):  
V. S. Aleksandrov ◽  
Yu. G. Zakharenko ◽  
N. A. Kononova ◽  
N. A. Mel’nikov ◽  
A. A. Pasternak ◽  
...  

Author(s):  
Beata Zjawin ◽  
Marcin Bober ◽  
Roman Ciuryło ◽  
Daniel Lisak ◽  
Michał Zawada ◽  
...  

Abstract Experiments aimed at searching for variations in the fine-structure constant α are based on spectroscopy of transitions in microscopic bound systems, such as atoms and ions, or resonances in optical cavities. The sensitivities of these systems to variations in α are typically on the order of unity and are fixed for a given system. For heavy atoms, highly charged ions and nuclear transitions, the sensitivity can be increased by benefiting from the relativistic effects and favorable arrangement of quantum states. This article proposes a new method for controlling the sensitivity factor of macroscopic physical systems. Specific concepts of optical cavities with tunable sensitivity to α are described. These systems show qualitatively different properties from those of previous studies of the sensitivity of macroscopic systems to variations in α, in which the sensitivity was found to be fixed and fundamentally limited to an order of unity. Although possible experimental constraints attainable with the specific optical cavity arrangements proposed in this article do not yet exceed the present best constraints on α variations, this work paves the way for developing new approaches to searching for variations in the fundamental constants of physics.


2020 ◽  
Author(s):  
Olcay Akman ◽  
Leon Arriola ◽  
Aditi Ghosh ◽  
Ryan Schroeder

AbstractStandard heuristic mathematical models of population dynamics are often constructed using ordinary differential equations (ODEs). These deterministic models yield pre-dictable results which allow researchers to make informed recommendations on public policy. A common immigration, natural death, and fission ODE model is derived from a quantum mechanics view. This macroscopic ODE predicts that there is only one stable equilibrium point . We therefore presume that as t → ∞, the expected value should be . The quantum framework presented here yields the same standard ODE model, however with very unexpected quantum results, namely . The obvious questions are: why isn’t , why are the probabilities ≈ 0.37, and where is the missing probability of 0.26? The answer lies in quantum tunneling of probabilities. The goal of this paper is to study these tunneling effects that give specific predictions of the uncertainty in the population at the macroscopic level. These quantum effects open the possibility of searching for “black–swan” events. In other words, using the more sophisticated quantum approach, we may be able to make quantitative statements about rare events that have significant ramifications to the dynamical system.


Sign in / Sign up

Export Citation Format

Share Document