A Secure Edge-Cloud Computing Framework for IoT Applications

Author(s):  
Yao Zhao ◽  
Zhenjiang Zhang ◽  
Jian Li
2018 ◽  
Vol 3 (1) ◽  
pp. 19 ◽  
Author(s):  
Matheus Alvian Wikanargo ◽  
Novian Adi Prasetyo ◽  
Angelina Pramana Thenata

AbstrakTeknologi cloud computing pada era sekarang berkembang pesat. Penerapan teknologi cloud computing sudah merambah ke berbagai industri, mulai dari perusahaan besar hingga perusahaan kecil dan menengah. Perambahan cloud computing di perindustrian berupa implementasi ke dalam sistem ERP. Namun, penetrasi teknologi ini dalam lingkup perusahaan kecil dan menengah (UKM) masih belum sekuat perusahaan besar. Penerapan ERP berbasis cloud computing yang masih tergolong baru tentu memiliki keuntungan dan penghambat yang mempengaruhi kinerja perusahaan. Hal tersebut menjadi salah satu pertimbangan UKM masih enggan menggunakan teknologi ini. Penelitian ini akan menganalisis framework yang paling sesuai untuk UKM dalam menerapkan sistem ERP berbasis cloud computing. Framework yang dianalisa yaitu Software as a Service (SaaS), Infrastructure as a Service (IaaS), dan Platform as as Service (PaaS). Ketiga framework ini akan dibandingkan menggunakan metode studi literatur. Tolak ukur yang menjadi acuan untuk perbandingan adalah Compatibility, Cost, Flexibility, Human Resource, Implementation, Maintenance, Security, dan Usability. Faktor-faktor tersebut akan diukur keuntungan dan penghambatnya jika diterapkan dalam SME. Hasil dari penilitian ini adalah Framework SaaS yang paling cocok untuk diterapkan pada perusahaan kecil dan menengah. Kata kunci— Cloud Computing, UKM, SaaS, IaaS, PaaS 


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1400
Author(s):  
Muhammad Adnan ◽  
Jawaid Iqbal ◽  
Abdul Waheed ◽  
Noor Ul Amin ◽  
Mahdi Zareei ◽  
...  

Modern vehicles are equipped with various sensors, onboard units, and devices such as Application Unit (AU) that support routing and communication. In VANETs, traffic management and Quality of Service (QoS) are the main research dimensions to be considered while designing VANETs architectures. To cope with the issues of QoS faced by the VANETs, we design an efficient SDN-based architecture where we focus on the QoS of VANETs. In this paper, QoS is achieved by a priority-based scheduling algorithm in which we prioritize traffic flow messages in the safety queue and non-safety queue. In the safety queue, the messages are prioritized based on deadline and size using the New Deadline and Size of data method (NDS) with constrained location and deadline. In contrast, the non-safety queue is prioritized based on First Come First Serve (FCFS) method. For the simulation of our proposed scheduling algorithm, we use a well-known cloud computing framework CloudSim toolkit. The simulation results of safety messages show better performance than non-safety messages in terms of execution time.


Author(s):  
VanDung Nguyen ◽  
Tran Trong Khanh ◽  
Tri D. T. Nguyen ◽  
Choong Seon Hong ◽  
Eui-Nam Huh

AbstractIn the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.


Author(s):  
Lo'ai Tawalbeh ◽  
Yousef Haddad ◽  
Omar Khamis ◽  
Fahd Aldosari ◽  
Elhadj Benkhelifa

While Internet of Things (IoT) technology comprises of nodes that are self-configuring and intelligent which are interconnected in a dynamic network, utilization of shared resources has been revolutionized by the cloud computing effectively reducing the cost overheadamong the cloud users.The major concerns of IoT infrastructure are reliability, performance, security and privacy. Cloud computing is popular for its unlimited storage and processing power. Cloud computing is much more matured with the capability to resolve most of the issues in IoT technology. A suitable way to address most of the issues in IoT technology is by integrating IoTparadigm into the Cloud technology.In this regard, we propose a methodology of applying our EPAS scheme for IoT applications. In our previous work[2] , we have proposed an Enhanced Privacy preserving gene based data Aggregation Scheme (EPAS) for private data transmission and storage by utilizing Enhanced P-Gene erasable data hiding approach. Enhanced P-Gene scheme ensures secure transmission and storage of private data by relying on a data aggregation scheme fully dependent on erasable data hiding technique. In the current work we analyse the applicability of the EPAS scheme for IoT applications. Experimental results show the suitability of the proposed scheme for application involving numeric data and also demonstrates performance improvement with existing proposals for data aggregation in cloud.


2018 ◽  
Vol 88 ◽  
pp. 254-261 ◽  
Author(s):  
Sayantani Basu ◽  
Marimuthu Karuppiah ◽  
K. Selvakumar ◽  
Kuan-Ching Li ◽  
S.K. Hafizul Islam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document