Determination of the Heat Transfer Coefficient for a Liquid-Solid Contact in Gravity Die Casting Processes

Author(s):  
Thomas Vossel ◽  
Björn Pustal ◽  
Andreas Bührig-Polazcek
Energy ◽  
2019 ◽  
Vol 175 ◽  
pp. 978-985 ◽  
Author(s):  
İlhan Ceylan ◽  
Sezayi Yilmaz ◽  
Özgür İnanç ◽  
Alper Ergün ◽  
Ali Etem Gürel ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1367
Author(s):  
Nino Wolff ◽  
Golo Zimmermann ◽  
Uwe Vroomen ◽  
Andreas Bührig-Polaczek

Local heat transfer in gravity die casting is of great importance for precision in terms of distortion, mechanical properties, and the quality of the castings due to its effect on solidification. Depending on contact conditions such as liquid melt to solid mold, a gap between mold and component, or contact pressure between casting and mold as a result of shrinkage, there are very large differences in heat transfer. The influences of mold material, mold coating and its influence of aging, mold temperature control, and layout on the heat transfer coefficient (HTC) were investigated experimentally for different contact cases. The experiments were carried out on a rotationally symmetrical experimental setup with modular exchangeable die inserts and cores using an AlSi7Mg0.3 alloy. From the results of the individual test series, the quantitative shares of the above-mentioned influencing variables in the respective effective heat transfer coefficients were determined by means of analysis of variance. From this, the parameters having the most significant influence on the local heat balance were derived.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 704
Author(s):  
Magdalena Jaremkiewicz ◽  
Jan Taler

This paper proposes an effective method for determining thermal stresses in structural elements with a three-dimensional transient temperature field. This is the situation in the case of pressure elements of complex shapes. When the thermal stresses are determined by the finite element method (FEM), the temperature of the fluid and the heat transfer coefficient on the internal surface must be known. Both values are very difficult to determine under industrial conditions. In this paper, an inverse space marching method was proposed for the determination of the heat transfer coefficient on the active surface of the thick-walled plate. The temperature and heat flux on the exposed surface were obtained by measuring the unsteady temperature in a small region on the insulated external surface of a pressure component that is easily accessible. Three different procedures for the determination of the heat transfer coefficient on the water-spray surface were presented, with the division of the plate into three or four finite volumes in the normal direction to the plate surface. Calculation and experimental tests were carried out in order to validate the method. The results of the measurements and calculations agreed very well. The computer calculation time is short, so the technique can be used for online stress determination. The proposed method can be applied to monitor thermal stresses in the components of the power unit in thermal power plants, both conventional and nuclear.


2013 ◽  
Vol 91 (12) ◽  
pp. 1034-1043 ◽  
Author(s):  
Ali Fguiri ◽  
Naouel Daouas ◽  
M-Sassi Radhouani ◽  
Habib Ben Aissia

The parallel hot wire technique is considered an effective and accurate means of experimental measurement of thermal conductivity. However, the assumptions of infinite medium and ideal infinitely thin and long heat source lead to some restrictions in the applicability of this technique. To make an effective experiment design, a numerical analysis should be carried out a priori, which requires a precise specification of the heating source strength and the heat transfer coefficient on the external surface. In this work, a more accurate physical and mathematical modeling of an experimental setup based on the parallel hot wire method is considered to estimate the two above-mentioned parameters from noisy temperature histories measured inside the material. Based on a sensitivity analysis, the heating source strength is estimated first using early time measurements. With such estimated value, determination of the heat transfer coefficient using temperatures measured at later times is then considered. The Levenberg–Marquardt (LM) method is successfully applied using a single experiment for the inverse solution of the two present parameter estimation problems. Estimates of this gradient-based deterministic method are validated with a stochastic method (Kalman filter). The effects of the measurement location, the heating duration, the measurement time step, and the LM parameter on the estimates and their associated confidence bounds are investigated. Used in the traditional fitting procedure of the parallel hot wire technique, the estimated heating source power provides a reasonable agreement between fitted and exact values of the thermal conductivity and the thermal diffusivity.


2019 ◽  
Vol 973 ◽  
pp. 9-14 ◽  
Author(s):  
Mikhail S. Chepchurov ◽  
Nikolay S. Lubimyi ◽  
Vladimir P. Voronenko ◽  
Daniel R. Adeniyi

The use of metal-polymers in the manufacture of mold-forming parts allows for the significant reduction in price and time used in manufacturing of parts. Using data on the thermal conductivity of metal-polymers in calculations of the cooling system of molds allows calculating the optimal cycle of obtaining the product. The authors propose a method of determining the coefficient of heat transfer of metal-polymers based on a die matrix, filled with aluminum. The chosen equipment or measuring tool by them, allows determining the heat transfer coefficient of the material in use. The values of the coefficient of heat transfer of the material in question, obtained in the course of the research can be use in different databases of applications used for modeling production by injection molding. The described method of determining the coefficient of heat transfer may be repeated for samples of metal-polymers.


2018 ◽  
Vol 194 ◽  
pp. 01022
Author(s):  
Anastasia Islamova

Thin films evaporation of distilled water, ethanol and HFE-7100 liquid was experimentally studied. The dependences of heat transfer coefficients in time were determined. It has been established that with a decrease in the layer thickness of distilled water and ethanol, the heat transfer coefficient increases. For the HFE liquid, the nature of the change is different: as the time increases, the heat transfer coefficient decreases.


Sign in / Sign up

Export Citation Format

Share Document