scholarly journals Computational Intelligence in the Context of Industry 4.0

Author(s):  
Alexander Hošovský ◽  
Ján Piteľ ◽  
Monika Trojanová ◽  
Kamil Židek

AbstractIndustry 4.0 is affecting almost every area of the industry, and as a result of its effects, systems, technologies, and the way information is processed are being transformed. Its typical feature is transmission of information in the system environment provided by the Internet of Things. All information should be stored and shared through cloud computing. As a result, access to information should be unrestricted. This chapter is focused on Computational Intelligence (CI) in the context of Industry 4.0. Each subchapter provides fundamentals of some paradigms, followed by the use of CI in the concrete paradigm. The ending part of the chapter is focused on connecting theory and practice in a case study, which lists industrial parts recognition by convolutional neural networks for assisted assembly.

Author(s):  
Leila Zemmouchi-Ghomari

Industry 4.0 is a technology-driven manufacturing process that heavily relies on technologies, such as the internet of things (IoT), cloud computing, web services, and big real-time data. Industry 4.0 has significant potential if the challenges currently being faced by introducing these technologies are effectively addressed. Some of these challenges consist of deficiencies in terms of interoperability and standardization. Semantic Web technologies can provide useful solutions for several problems in this new industrial era, such as systems integration and consistency checks of data processing and equipment assemblies and connections. This paper discusses what contribution the Semantic Web can make to Industry 4.0.


Author(s):  
Meltem Mutluturk ◽  
Burcu Kor ◽  
Bilgin Metin

The development of information and communication technologies (ICT) has led to many innovative technologies. The integration of technologies such as the internet of things (IoT), cloud computing, and machine learning concepts have given rise to Industry 4.0. Fog and edge computing have stepped in to fill the areas where cloud computing is inadequate to ensure these systems work quickly and efficiently. The number of connected devices has brought about cybersecurity issues. This study reviewed the current literature regarding edge/fog-based cybersecurity in IoT to display the current state.


2020 ◽  
Vol 10 (23) ◽  
pp. 8566
Author(s):  
Alberto Cotrino ◽  
Miguel A. Sebastián ◽  
Cristina González-Gaya

The Industry 4.0 era has resulted in several opportunities and challenges for the manufacturing industry and for small and medium-sized enterprises (SME); technologies such as the Internet of Things (IoT), Virtual Reality (VR) or Cloud Computing are changing business structures in profound ways. A literature review shows that most large-sized enterprises have rolled out investment plans, some of which are reviewed during this research and show that Industry 4.0 investments in such companies exceed the turnover of SMEs in all cases (<€50 million), which makes access to those technologies by SMEs very difficult. The research has also identified two gaps: firstly, the recent literature review fails to address the implementation of Industry 4.0 technologies in SMEs from a practical viewpoint; secondly, the few existing roadmaps for the implementation of Industry 4.0 lack a focus on SMEs. Furthermore, SMEs do not have the resources to select suitable technologies or create the right strategy, and they do not have the means to be fully supported by consultancies. To this end, a simple six-step roadmap is proposed that includes real implementations of Industry 4.0 in SMEs. Our results show that implementing Industry 4.0 solutions following the proposed roadmap helps SMEs to select appropriate technologies. In addition, the practical examples shown across this work demonstrate that SMEs can access several Industry 4.0 technologies with low-cost investments.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 62 ◽  
Author(s):  
Jonnro Erasmus ◽  
Paul Grefen ◽  
Irene Vanderfeesten ◽  
Konstantinos Traganos

Industry 4.0 is expected to deliver significant gains in productivity by assimilating several technological advancements including cloud computing, the Internet-of-Things, and smart devices. However, it is unclear how these technologies should be leveraged together to deliver the promised benefits. We present the architecture design of an information system that integrates these technologies to support hybrid manufacturing processes, i.e., processes in which human and robotic workers collaborate. We show how well-structured architecture design is the basis for a modular, complex cyber-physical system that provides horizontal, cross-functional manufacturing process management and vertical control of heterogenous work cells. The modular nature allows the extensible cloud support enhancing its accessibility to small and medium enterprises. The information system is designed as part of the HORSE Project: a five-year research and innovation project aimed at making recent technological advancements more accessible to small and medium manufacturing enterprises. The project consortium includes 10 factories to represent the typical problems encountered on the factory floor and provide real-world environments to test and evaluate the developed information system. The resulting information system architecture model is proposed as a reference architecture for a manufacturing operations management system for Industry 4.0. As a reference architecture, it serves two purposes: (1) it frames the scientific inquiry and advancement of information systems for Industry 4.0 and (2) it can be used as a template to develop commercial-grade manufacturing applications for Industry 4.0.


2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Camilo Andrés Cáceres Flórez ◽  
João Mauricio Rosário ◽  
Dario Amaya Hurtado

Abstract: The implementation of Manufacture and Automation techniques is mandatory in the current world. Mainly, the enhancement and progress of healthcare are fundamental in wellbeing improvement. This paper points to the utilization of the Internet of Things (IoT) and Industry 4.0 concepts oriented to the optimization of a Smart Hospital using the Hospital Emergency Department (HED) as a case study. This proposal focuses on the development of a smart Hospital-based of the IoT, Industry 4.0, Health 4.0, and other current technology. On the other hand, the use of a computational simulation tool like the Discrete Event Simulation Model (DES) will allow the test, recognition, and reduction of bottlenecks in the HED workflow. The issue given by the bottlenecks is automatically controlled using an improved dynamic shift management proposal based on control theory, forecasting methods, and telemedicine. The results show an improvement in the use of the resources and a reduction of the length of stay that directly reduces the HED mortality rate, improving the service quality. The objective of this paper is to propose a simulation tool-based on DES for a selected HED, using forecasting methods of the patients’ arrival in a HED using the Autoregressive integrated moving average (ARIMA) model. Following the forecasted entries, a proposal for bottleneck avoidance using a HED DES was realized. The forecasting data provided useful predictive information for the improvement of the HED workflow. As well as the analyzed data of a traditional HED system is helpful to solve the overcrowding problem. Finally, the use of simulation tools allows the test and validation of novel proposals for two smart HED optimization proposals following e-Health and Hospital 4.0 principles.


Author(s):  
Anna Smyshlyaeva ◽  
Kseniya Reznikova ◽  
Denis Savchenko

With the advent of the Industry 4.0 concept, the approach to production automation has fundamentally changed. The manufacturing industry is based on such modern technologies as the Internet of Things, Big Data, cloud computing, artificial intelligence and cyber-physical systems. These technologies have proven themselves not only in industry, but also in various other branches of life. In this paper, the authors consider the concept of cyber-physical systems – systems based on the interaction of physical processes with computational ones. The article presents a conceptual model of cyber-physical systems that displays its elements and their interaction. In cyber-physical systems, it represents five levels: physical, network, data storage, processing and analytics level, application level. Cyber-physical systems carry out their work using a basic set of technologies: the Internet of things, big data and cloud computing. Additional technologies are used depending on the purpose of the system. At the physical level, data is collected from physical devices. With the help of the Internet of Things at the network level, data is transferred to a data warehouse for further processing or processed almost immediately thanks to cloud computing. The amount of data in cyber-physical systems is enormous, so it is necessary to use big data technology and effective methods for processing and analyzing this data. The main feature of this technological complex is real-time operation. Despite the improvement in the quality of production and human life, cyber-physical systems have a number of disadvantages. The authors highlight the main problems of cyber-physical systems and promising areas of research for their development. Having solved the listed problems, cyber-physical systems will reach a qualitatively new level of utility. The paper also provides examples of the implementation of concepts such as a smart city, smart grid, smart manufacturing, smart house. These concepts are based on the principle of cyber-physical systems.


Author(s):  
Richard Essah

In this 21st Century technology extent of time and worldwide integration, various narrow and medium enterprises exist adopting cloud calculate for their trade operations. Cloud calculate exist an increasing information in visible form Centre technology in accordance with the becoming more intense traffic connected to the internet fashionable the period of the Internet of Things (IoT). These electronics outwit the defect of conventional servers for speed, scalability and effectiveness. However, skilled exist still narrow enterprises that exist undecided of the appropriate of cloud computing time in military operation fashionable trade movement. Thus, this paper is inscribed to survey the views of person who is very involved in education and learning about the benefits of cloud computing rite of a fashionable trade movement that motivate bureaucracy to legally care for business enterprise. The aims of the study include to ascertain the benefits of cloud to small-scale enterprises in India, to determine the challenges facing cloud users and to unravel the strategies that can improve the strategic growth of cloud users in India enterprises.  The researcher used a case study design and a qualitative research approach. The place of the study is Chandigarh University of India and Busy Network company in India.


Author(s):  
Kai Zhang

With the development of emerging technology innovations such as the internet of things, classroom management has also shown an informatization trend. Among them, smart classrooms are an important part of the current university information environment construction. The purpose of this article is to build a smart classroom into an intelligent teaching environment with many functions such as intelligent perception and identification, real-time monitoring based on the internet of things technology and cloud computing technology. A questionnaire survey was conducted among freshman students in some majors, and interviews were conducted with the instructors. It was found that 92.19% of the students were satisfied with the classroom learning in the smart classroom environment, and most teachers thought that the teaching effect had been improved. Experiments have proven that the operation of smart classrooms based on the internet of things and cloud computing realizes the intelligence of teaching management services and improves the level of education informationization in schools.


Computer ◽  
2016 ◽  
Vol 49 (5) ◽  
pp. 87-90 ◽  
Author(s):  
Phillip A. Laplante ◽  
Jeffrey Voas ◽  
Nancy Laplante

Sign in / Sign up

Export Citation Format

Share Document