Deep Learning for Lung Disease Detection from Chest X-Rays Images

Author(s):  
Ebenezer Jangam ◽  
Chandra Sekhara Rao Annavarapu ◽  
Mourad Elloumi
Author(s):  
Mohammed Seghir Guellil ◽  
Samir Ghouali ◽  
Emad Kamil Hussein ◽  
Mohammed Anis Oukebdane ◽  
Amina Elbatoul Dinar ◽  
...  

2020 ◽  
Vol 6 (12) ◽  
pp. 131
Author(s):  
Stefanus Tao Hwa Kieu ◽  
Abdullah Bade ◽  
Mohd Hanafi Ahmad Hijazi ◽  
Hoshang Kolivand

The recent developments of deep learning support the identification and classification of lung diseases in medical images. Hence, numerous work on the detection of lung disease using deep learning can be found in the literature. This paper presents a survey of deep learning for lung disease detection in medical images. There has only been one survey paper published in the last five years regarding deep learning directed at lung diseases detection. However, their survey is lacking in the presentation of taxonomy and analysis of the trend of recent work. The objectives of this paper are to present a taxonomy of the state-of-the-art deep learning based lung disease detection systems, visualise the trends of recent work on the domain and identify the remaining issues and potential future directions in this domain. Ninety-eight articles published from 2016 to 2020 were considered in this survey. The taxonomy consists of seven attributes that are common in the surveyed articles: image types, features, data augmentation, types of deep learning algorithms, transfer learning, the ensemble of classifiers and types of lung diseases. The presented taxonomy could be used by other researchers to plan their research contributions and activities. The potential future direction suggested could further improve the efficiency and increase the number of deep learning aided lung disease detection applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Wong ◽  
Z. Q. Lin ◽  
L. Wang ◽  
A. G. Chung ◽  
B. Shen ◽  
...  

AbstractA critical step in effective care and treatment planning for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause for the coronavirus disease 2019 (COVID-19) pandemic, is the assessment of the severity of disease progression. Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity, with two important assessment metrics being extent of lung involvement and degree of opacity. In this proof-of-concept study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system. Data consisted of 396 CXRs from SARS-CoV-2 positive patient cases. Geographic extent and opacity extent were scored by two board-certified expert chest radiologists (with 20+ years of experience) and a 2nd-year radiology resident. The deep neural networks used in this study, which we name COVID-Net S, are based on a COVID-Net network architecture. 100 versions of the network were independently learned (50 to perform geographic extent scoring and 50 to perform opacity extent scoring) using random subsets of CXRs from the study, and we evaluated the networks using stratified Monte Carlo cross-validation experiments. The COVID-Net S deep neural networks yielded R$$^2$$ 2 of $$0.664 \pm 0.032$$ 0.664 ± 0.032 and $$0.635 \pm 0.044$$ 0.635 ± 0.044 between predicted scores and radiologist scores for geographic extent and opacity extent, respectively, in stratified Monte Carlo cross-validation experiments. The best performing COVID-Net S networks achieved R$$^2$$ 2 of 0.739 and 0.741 between predicted scores and radiologist scores for geographic extent and opacity extent, respectively. The results are promising and suggest that the use of deep neural networks on CXRs could be an effective tool for computer-aided assessment of SARS-CoV-2 lung disease severity, although additional studies are needed before adoption for routine clinical use.


EBioMedicine ◽  
2021 ◽  
Vol 70 ◽  
pp. 103517
Author(s):  
Vineet K. Raghu ◽  
Michael T. Lu
Keyword(s):  
X Rays ◽  

Sign in / Sign up

Export Citation Format

Share Document