scholarly journals Deep learning applied to automatic disease detection using chest X‐rays

Author(s):  
Daniel A. Moses
Author(s):  
Ebenezer Jangam ◽  
Chandra Sekhara Rao Annavarapu ◽  
Mourad Elloumi

Author(s):  
Mohammed Seghir Guellil ◽  
Samir Ghouali ◽  
Emad Kamil Hussein ◽  
Mohammed Anis Oukebdane ◽  
Amina Elbatoul Dinar ◽  
...  

EBioMedicine ◽  
2021 ◽  
Vol 70 ◽  
pp. 103517
Author(s):  
Vineet K. Raghu ◽  
Michael T. Lu
Keyword(s):  
X Rays ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Nishimori ◽  
Kunihiko Kiuchi ◽  
Kunihiro Nishimura ◽  
Kengo Kusano ◽  
Akihiro Yoshida ◽  
...  

AbstractCardiac accessory pathways (APs) in Wolff–Parkinson–White (WPW) syndrome are conventionally diagnosed with decision tree algorithms; however, there are problems with clinical usage. We assessed the efficacy of the artificial intelligence model using electrocardiography (ECG) and chest X-rays to identify the location of APs. We retrospectively used ECG and chest X-rays to analyse 206 patients with WPW syndrome. Each AP location was defined by an electrophysiological study and divided into four classifications. We developed a deep learning model to classify AP locations and compared the accuracy with that of conventional algorithms. Moreover, 1519 chest X-ray samples from other datasets were used for prior learning, and the combined chest X-ray image and ECG data were put into the previous model to evaluate whether the accuracy improved. The convolutional neural network (CNN) model using ECG data was significantly more accurate than the conventional tree algorithm. In the multimodal model, which implemented input from the combined ECG and chest X-ray data, the accuracy was significantly improved. Deep learning with a combination of ECG and chest X-ray data could effectively identify the AP location, which may be a novel deep learning model for a multimodal model.


2021 ◽  
Vol 7 (7) ◽  
pp. 105
Author(s):  
Guillaume Reichert ◽  
Ali Bellamine ◽  
Matthieu Fontaine ◽  
Beatrice Naipeanu ◽  
Adrien Altar ◽  
...  

The growing need for emergency imaging has greatly increased the number of conventional X-rays, particularly for traumatic injury. Deep learning (DL) algorithms could improve fracture screening by radiologists and emergency room (ER) physicians. We used an algorithm developed for the detection of appendicular skeleton fractures and evaluated its performance for detecting traumatic fractures on conventional X-rays in the ER, without the need for training on local data. This algorithm was tested on all patients (N = 125) consulting at the Louis Mourier ER in May 2019 for limb trauma. Patients were selected by two emergency physicians from the clinical database used in the ER. Their X-rays were exported and analyzed by a radiologist. The prediction made by the algorithm and the annotation made by the radiologist were compared. For the 125 patients included, 25 patients with a fracture were identified by the clinicians, 24 of whom were identified by the algorithm (sensitivity of 96%). The algorithm incorrectly predicted a fracture in 14 of the 100 patients without fractures (specificity of 86%). The negative predictive value was 98.85%. This study shows that DL algorithms are potentially valuable diagnostic tools for detecting fractures in the ER and could be used in the training of junior radiologists.


Sign in / Sign up

Export Citation Format

Share Document