Process Model Discovery from Sensor Event Data

Author(s):  
Dominik Janssen ◽  
Felix Mannhardt ◽  
Agnes Koschmider ◽  
Sebastiaan J. van Zelst
Keyword(s):  
2020 ◽  
Vol 17 (3) ◽  
pp. 927-958
Author(s):  
Mohammadreza Sani ◽  
Sebastiaan van Zelst ◽  
Aalst van der

Process discovery algorithms automatically discover process models based on event data that is captured during the execution of business processes. These algorithms tend to use all of the event data to discover a process model. When dealing with large event logs, it is no longer feasible using standard hardware in limited time. A straightforward approach to overcome this problem is to down-size the event data by means of sampling. However, little research has been conducted on selecting the right sample, given the available time and characteristics of event data. This paper evaluates various subset selection methods and evaluates their performance on real event data. The proposed methods have been implemented in both the ProM and the RapidProM platforms. Our experiments show that it is possible to considerably speed up discovery using instance selection strategies. Furthermore, results show that applying biased selection of the process instances compared to random sampling will result in simpler process models with higher quality.


2021 ◽  
Vol 16 ◽  
pp. 1-14
Author(s):  
Zineb Lamghari

Process discovery technique aims at automatically generating a process model that accurately describes a Business Process (BP) based on event data. Related discovery algorithms consider recorded events are only resulting from an operational BP type. While the management community defines three BP types, which are: Management, Support and Operational. They distinguish each BP type by different proprieties like the main business process objective as domain knowledge. This puts forward the lack of process discovery technique in obtaining process models according to business process types (Management and Support). In this paper, we demonstrate that business process types can guide the process discovery technique in generating process models. A special interest is given to the use of process mining to deal with this challenge.


2017 ◽  
Vol 7 (10) ◽  
pp. 1023 ◽  
Author(s):  
Mauricio Arriagada-Benítez ◽  
Marcos Sepúlveda ◽  
Jorge Munoz-Gama ◽  
Joos C. A. M. Buijs
Keyword(s):  

2021 ◽  
Vol 11 (22) ◽  
pp. 10556
Author(s):  
Heidy M. Marin-Castro ◽  
Edgar Tello-Leal

Process Mining allows organizations to obtain actual business process models from event logs (discovery), to compare the event log or the resulting process model in the discovery task with the existing reference model of the same process (conformance), and to detect issues in the executed process to improve (enhancement). An essential element in the three tasks of process mining (discovery, conformance, and enhancement) is data cleaning, used to reduce the complexity inherent to real-world event data, to be easily interpreted, manipulated, and processed in process mining tasks. Thus, new techniques and algorithms for event data preprocessing have been of interest in the research community in business process. In this paper, we conduct a systematic literature review and provide, for the first time, a survey of relevant approaches of event data preprocessing for business process mining tasks. The aim of this work is to construct a categorization of techniques or methods related to event data preprocessing and to identify relevant challenges around these techniques. We present a quantitative and qualitative analysis of the most popular techniques for event log preprocessing. We also study and present findings about how a preprocessing technique can improve a process mining task. We also discuss the emerging future challenges in the domain of data preprocessing, in the context of process mining. The results of this study reveal that the preprocessing techniques in process mining have demonstrated a high impact on the performance of the process mining tasks. The data cleaning requirements are dependent on the characteristics of the event logs (voluminous, a high variability in the set of traces size, changes in the duration of the activities. In this scenario, most of the surveyed works use more than a single preprocessing technique to improve the quality of the event log. Trace-clustering and trace/event level filtering resulted in being the most commonly used preprocessing techniques due to easy of implementation, and they adequately manage noise and incompleteness in the event logs.


Author(s):  
Mauricio Arriagada-Benítez ◽  
Marcos Sepúlveda ◽  
Jorge Munoz-Gama ◽  
Joos C. A. M. Buijs

Configurable process models are frequently used to represent business workflows and other discrete event systems among different branches of large organizations: they unify commonalities shared by all branches and describe their differences, at the same time. The configuration of such models is usually done manually, which is challenging. On the one hand, when the number of configurable nodes in the configurable process model grows, the size of the search space increases exponentially. On the other hand, the person performing the configuration may lack the holistic perspective to make the right choice for all configurable nodes at the same time, since choices influence each other. Nowadays, information systems that support the execution of business processes create event data reflecting how processes are performed. In this article, we propose three strategies (based on exhaustive search, genetic algorithms, and greedy heuristic) that use event data to automatically derive a process model from a configurable process model that better represents the characteristics of the process in a specific branch. These strategies have been implemented in our proposed framework, and tested in both business-like event logs as recorded in a higher educational ERP system, and a real case scenario involving a set of Dutch municipalities.


Author(s):  
Bambang Jokonowo ◽  
Nenden Siti Fatonah ◽  
Emelia Akashah Patah Akhir

Background: Standard operating procedure (SOP) is a series of business activities to achieve organisational goals, with each activity carried to be recorded and stored in the information system together with its location (e.g., SCM, ERP, LMS, CRM). The activity is known as event data and is stored in a database known as an event log.Objective: Based on the event log, we can calculate the fitness to determine whether the business process SOP is following the actual business process.Methods: This study obtains the event log from a terminal operating system (TOS), which records the dwelling time at the container port. The conformance checking using token-based replay method calculates fitness by comparing the event log with the process model.Results: The findings using the Alpha algorithm resulted in the most traversed traces (a, b, n, o, p). The fitness calculation returns 1.0 were produced, missing, and remaining tokens are replied to each of the other traces.Conclusion: Thus, if the process mining produces a fitness of more than 0.80, this shows that the process model is following the actual business process. Keywords: Conformance Checking, Dwelling time, Event log, Fitness, Process Discovery, Process Mining


Computing ◽  
2021 ◽  
Author(s):  
Mohammadreza Fani Sani ◽  
Sebastiaan J. van Zelst ◽  
Wil M. P. van der Aalst

AbstractWith Process discovery algorithms, we discover process models based on event data, captured during the execution of business processes. The process discovery algorithms tend to use the whole event data. When dealing with large event data, it is no longer feasible to use standard hardware in a limited time. A straightforward approach to overcome this problem is to down-size the data utilizing a random sampling method. However, little research has been conducted on selecting the right sample, given the available time and characteristics of event data. This paper systematically evaluates various biased sampling methods and evaluates their performance on different datasets using four different discovery techniques. Our experiments show that it is possible to considerably speed up discovery techniques using biased sampling without losing the resulting process model quality. Furthermore, due to the implicit filtering (removing outliers) obtained by applying the sampling technique, the model quality may even be improved.


1979 ◽  
Vol 44 (1) ◽  
pp. 3-30 ◽  
Author(s):  
Carol A. Pruning

A rationale for the application of a stage process model for the language-disordered child is presented. The major behaviors of the communicative system (pragmatic-semantic-syntactic-phonological) are summarized and organized in stages from pre-linguistic to the adult level. The article provides clinicians with guidelines, based on complexity, for the content and sequencing of communicative behaviors to be used in planning remedial programs.


Sign in / Sign up

Export Citation Format

Share Document