Stall Flutter

2021 ◽  
pp. 259-278
Author(s):  
Fernando Sisto
Keyword(s):  
Author(s):  
Hongsik Im ◽  
Xiangying Chen ◽  
Gecheng Zha

Detached eddy simulation of an aeroelastic self-excited instability, flutter in NASA Rotor 67 is conducted using a fully coupled fluid/structre interaction. Time accurate compressible 3D Navier-Stokes equations are solved with a system of 5 decoupled modal equations in a fully coupled manner. The 5th order WENO scheme for the inviscid flux and the 4th order central differencing for the viscous flux are used to accurately capture interactions between the flow and vibrating blades with the DES (detached eddy simulation) of turbulence. A moving mesh concept that can improve mesh quality over the rotor tip clearance was implemented. Flutter simulations were first conducted from choke to stall using 4 blade passages. Stall flutter initiated at rotating stall onset, grows dramatically with resonance. The frequency analysis shows that resonance occurs at the first mode of the rotor blade. Before stall, the predicted responses of rotor blades decayed with time, resulting in no flutter. Full annulus simulation at peak point verifies that one can use the multi-passage approach with periodic boundary for the flutter prediction.


AIAA Journal ◽  
1992 ◽  
Vol 30 (1) ◽  
pp. 153-162 ◽  
Author(s):  
Peter Dunn ◽  
John Dugundji
Keyword(s):  

2022 ◽  
Author(s):  
Hunter C. Ringenberg ◽  
John A. Farnsworth

Author(s):  
Harshini Devathi ◽  
Sunetra Sarkar

A novel uncertainty quantification routine in the genre of adaptive sparse grid stochastic collocation (SC) has been proposed in this study to investigate the propagation of parametric uncertainties in a stall flutter aeroelastic system. In a hypercube stochastic domain, presence of strong nonlinearities can give way to steep solution gradients that can adversely affect the convergence of nonadaptive sparse grid collocation schemes. A new adaptive scheme is proposed here that allows for accelerated convergence by clustering more discretization points in regimes characterized by steep fronts, using hat-like basis functions with nonequidistant nodes. The proposed technique has been applied on a nonlinear stall flutter aeroelastic system to quantify the propagation of multiparametric uncertainty from both structural and aerodynamic parameters. Their relative importance on the stochastic response is presented through a sensitivity analysis.


Author(s):  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Bernd Beirow ◽  
Jens Nipkau ◽  
Thomas Giersch ◽  
...  

Recent demands for a reduction of specific fuel consumption of jet engines have been opposed by increasing propulsive efficiency with higher bypass ratios and increased engine sizes. At the same time the challenge for the engine development is to design safe and efficient fan blades of high aspect ratios. Since the fan is the very first rotor stage, it experiences significant distortions in the incoming flow depending on the operating conditions. Flow distortions do not only lead to a performance and stall margin loss but also to remarkable low engine order (LEO) excitation responsible for forced vibrations of fundamental modes. Additionally, fans of jet engines typically suffer from stall flutter, which can be additionally amplified by reflections of acoustic pressure waves at the intake. Stall flutter appears before approaching the stall line on the fan’s characteristic and limits its stable operating range. Despite the fact that this “flutter bite” usually affects only a very narrow speed range, it reduces the overall margin of safe operation significantly. With increasing aspect ratios of ultra-high bypass ratio jet engines the flutter susceptibility will probably increase further and emphasizes the importance of considering aeromechanical analyses early in the design phase of future fans. This paper aims at proving that intentional mistuning is able to remove the flutter bite of modern jet engine fans without raising issues due to heavily increased forced vibrations induced by LEO excitation. Whereas intentional mistuning is an established technology in mitigating flutter, it is also known to amplify the forced response. However, recent investigations considering aeroelastic coupling revealed that under specific circumstances mistuning can also reduce the forced response due to engine order excitation. In order to allow a direct comparison and to limit costs as well as effort at the same time, the intentional mistuning is introduced in a non-destructive way by applying heavy paint to the blades. Its impact on the blade’s natural frequencies is estimated via finite element models with an additional paint layer. In parallel, this procedure is experimentally verified with painted fan blades in the laboratory. A validated SNM (subset of nominal system modes) representation of the fan is used as a computational model to characterize its mistuned vibration behavior. Its validation is done by comparing mistuned mode shape envelopes and frequencies of an experimental modal analysis at rest with those obtained by the updated computational model. In order to find a mistuning pattern minimizing the forced response of mode 1 and 2 at the same time and satisfying stability and imbalance constraints, a multi-objective optimization has been carried out. Finally, the beneficial properties of the optimized mistuning pattern are verified in a rig test of the painted rotor.


1976 ◽  
Vol 42 (360) ◽  
pp. 2441-2451
Author(s):  
Hideo TANAKA ◽  
Youji HANAMURA ◽  
Kenji SHINOHARA ◽  
Kazuo YAMAGUCHI

Sign in / Sign up

Export Citation Format

Share Document