Concluding Remarks: De-risking Tropical Cyclones in the Era of Climate Change Emergency

Author(s):  
Kaitano Dube ◽  
Godwell Nhamo
2010 ◽  
Vol 3 (3) ◽  
pp. 157-163 ◽  
Author(s):  
Thomas R. Knutson ◽  
John L. McBride ◽  
Johnny Chan ◽  
Kerry Emanuel ◽  
Greg Holland ◽  
...  

2021 ◽  
Vol 14 (9) ◽  
pp. 1-7
Author(s):  
N.D. Hung ◽  
L.T.H. Thuy ◽  
T.V. Hang ◽  
T.N. Luan

The coral reef ecosystem in Cu Lao Cham, Vietnam is part of the central zone of the Cu Lao Cham -Hoi An, a biosphere reserve and it is strictly protected. However, the impacts of natural disasters - tropical cyclones (TCs) go beyond human protection. The characteristic feature of TCs is strong winds and the consequences of strong winds are high waves. High waves caused by strong TCs (i.e. level 13 or more) cause decline in coral cover in the seas around Cu Lao Cham. Based on the relationship between sea surface temperature (SST) and the maximum potential intensity (MPI) of TCs, this research determines the number of strong TCs in Cu Lao Cham in the future. Using results from a regional climate change model, the risk is that the number of strong TCs in the period 2021-2060 under the RCP4.5 scenario, will be 3.7 times greater than in the period 1980-2019 and under the RCP 8.5 scenario it will be 5.2 times greater than in the period 1980-2019. We conclude that increases in SST in the context of climate change risks will increase the number and intensity of TCs and so the risk of their mechanical impact on coral reefs will be higher leading to degradation of this internationally important site.


2021 ◽  
Author(s):  
Laurent Lambert ◽  
Mahmood Almehdhar ◽  
Mustafa Haji

<p><strong>Abstract</strong>: Changes in the global oceanic system have already negatively affected the world’s marine life and the livelihoods of many coastal communities across the world, including in the Middle East' and Eastern Africa's Least Developed Countries (LDCs). Coastal communities in Somalia and Yemen for instance, have been particularly affected by extreme environmental events (EEEs), with an increase in the frequency of tropical cyclones over the past 20 years. Using expert elicitation as a method to generate data to assess and quantify a specific issue in the absence of sufficient and/or reliable data, the authors interviewed selected specialists in or from Somalia and Yemen, from diverse fields of expertise related to climate change, extreme environmental events, disaster risk reduction, and humanitarian affairs. Ten experts followed the elicitation protocol and answered a specific series of questions in order to better quantify the expectable mid-to-long-term climatic and humanitarian levels of risks, impacts, and consequences that climate change and related issues (e.g., sea-level rise, tropical cyclones, and sea surge) may generate in coastal areas along the Gulf of Aden's coastal cities of Aden and Bossaso, in Yemen and Somalia, respectively.</p><p>The findings indicate that there is cause for significant concern as climate change is assessed by all interviewees - irrespective of their background -, as very likely to hold a negative to a devastating impact on (fresh) water security, food security, public health, social conflicts, population displacement, and eventually political stability; and to strongly worsen the humanitarian situations in Somalia and Yemen, both in the medium-term (i.e., 2020-2050) and the long-term (i.e., 2020-2100). The authors call on the scientific community to further research the issue of climate change in the understudied coastal areas of the Gulf of Aden, and on the international community to pro-actively and urgently help the local populations and relevant authorities to rapidly and strongly build up their adaptation capacities, especially in the niche of coastal EEEs.</p>


2021 ◽  
Author(s):  
Wim Thiery ◽  
Stefan Lange ◽  
Joeri Rogelj ◽  
Carl-Friedrich Schleussner ◽  
Lukas Gudmundsson ◽  
...  

<p>People are being affected by climate change around the globe today at around 1°C of warming above pre-industrial levels. Current policies towards climate mitigation would result in about twice as much warming over the next 80 years, roughly the lifetime of a today's newborn. Here we quantify the stronger climate change burden that will fall on younger generations by introducing a novel analysis framework that expresses impacts as a function of how they are experienced along the course of a person's life. Combining projections of population, temperature, and 15 impact models encompassing droughts, heatwaves, tropical cyclones, crop failure, floods, and wildfires, we show that, under current climate pledges, newborns in 2020 are projected to experience 2-13 times more extreme events during their life than a person born in 1960, with substantial variations across regions. Limiting warming to 1.5°C consistently reduces that burden, while still leaving younger generations with unavoidable impacts that are unmatched by the impacts experienced by older generations. Our results provide a quantified scientific basis to understand the position from which younger generations challenge the present shortfall of adequate climate action.</p>


2020 ◽  
Vol 105 (1) ◽  
pp. 431-459
Author(s):  
Pablo Ruiz-Salcines ◽  
Christian M. Appendini ◽  
Paulo Salles ◽  
Wilmer Rey ◽  
Jonathan L. Vigh

2020 ◽  
Vol 9 (2) ◽  
pp. 75-86 ◽  
Author(s):  
Eun Jeong Cha ◽  
Thomas R. Knutson ◽  
Tsz-Cheung Lee ◽  
Ming Ying ◽  
Toshiyuki Nakaegawa

Sign in / Sign up

Export Citation Format

Share Document