On the use of synthetic tropical cyclones and hypothetical events for storm surge assessment under climate change

2020 ◽  
Vol 105 (1) ◽  
pp. 431-459
Author(s):  
Pablo Ruiz-Salcines ◽  
Christian M. Appendini ◽  
Paulo Salles ◽  
Wilmer Rey ◽  
Jonathan L. Vigh
2021 ◽  
Vol 6 ◽  
Author(s):  
Pramodit Adhikari ◽  
Mohamed A. Abdelhafez ◽  
Yue Dong ◽  
Yanlin Guo ◽  
Hussam N. Mahmoud ◽  
...  

Coastal cities in the Southeast and Gulf Coast of the United States are at an increased risk of tropical cyclones (hurricanes) due to the combined effects of urbanization, rapid economic development, and climate change. Current building codes and standards focus on minimum performance criteria for individual buildings exposed to severe hazard events to ensure occupant safety. However, they do not consider the resilience of buildings and building portfolios, which are key factors in determining whether a community can respond to and recover from a severe natural hazard event. Light-frame wood residential buildings dominate the residential market in the US, represent a significant percentage of the investment in the built environment, and are especially vulnerable to hurricane winds and storm surge in coastal areas. Our study of the impact of various hurricane and climate change scenarios on the performance of coastal residential communities reveals that decision-making at the community level is needed to develop rational engineering and urban planning policies, to mitigate the impact of hurricane wind and storm surge, and to adapt to climate change. The results suggest that fundamental changes in the current building regulatory process may be necessary.


2010 ◽  
Vol 3 (3) ◽  
pp. 157-163 ◽  
Author(s):  
Thomas R. Knutson ◽  
John L. McBride ◽  
Johnny Chan ◽  
Kerry Emanuel ◽  
Greg Holland ◽  
...  

2021 ◽  
Vol 764 ◽  
pp. 144439
Author(s):  
Shih-Chun Hsiao ◽  
Wen-Son Chiang ◽  
Jiun-Huei Jang ◽  
Han-Lun Wu ◽  
Wei-Shiun Lu ◽  
...  

2021 ◽  
Vol 14 (9) ◽  
pp. 1-7
Author(s):  
N.D. Hung ◽  
L.T.H. Thuy ◽  
T.V. Hang ◽  
T.N. Luan

The coral reef ecosystem in Cu Lao Cham, Vietnam is part of the central zone of the Cu Lao Cham -Hoi An, a biosphere reserve and it is strictly protected. However, the impacts of natural disasters - tropical cyclones (TCs) go beyond human protection. The characteristic feature of TCs is strong winds and the consequences of strong winds are high waves. High waves caused by strong TCs (i.e. level 13 or more) cause decline in coral cover in the seas around Cu Lao Cham. Based on the relationship between sea surface temperature (SST) and the maximum potential intensity (MPI) of TCs, this research determines the number of strong TCs in Cu Lao Cham in the future. Using results from a regional climate change model, the risk is that the number of strong TCs in the period 2021-2060 under the RCP4.5 scenario, will be 3.7 times greater than in the period 1980-2019 and under the RCP 8.5 scenario it will be 5.2 times greater than in the period 1980-2019. We conclude that increases in SST in the context of climate change risks will increase the number and intensity of TCs and so the risk of their mechanical impact on coral reefs will be higher leading to degradation of this internationally important site.


2021 ◽  
Author(s):  
Laurent Lambert ◽  
Mahmood Almehdhar ◽  
Mustafa Haji

<p><strong>Abstract</strong>: Changes in the global oceanic system have already negatively affected the world’s marine life and the livelihoods of many coastal communities across the world, including in the Middle East' and Eastern Africa's Least Developed Countries (LDCs). Coastal communities in Somalia and Yemen for instance, have been particularly affected by extreme environmental events (EEEs), with an increase in the frequency of tropical cyclones over the past 20 years. Using expert elicitation as a method to generate data to assess and quantify a specific issue in the absence of sufficient and/or reliable data, the authors interviewed selected specialists in or from Somalia and Yemen, from diverse fields of expertise related to climate change, extreme environmental events, disaster risk reduction, and humanitarian affairs. Ten experts followed the elicitation protocol and answered a specific series of questions in order to better quantify the expectable mid-to-long-term climatic and humanitarian levels of risks, impacts, and consequences that climate change and related issues (e.g., sea-level rise, tropical cyclones, and sea surge) may generate in coastal areas along the Gulf of Aden's coastal cities of Aden and Bossaso, in Yemen and Somalia, respectively.</p><p>The findings indicate that there is cause for significant concern as climate change is assessed by all interviewees - irrespective of their background -, as very likely to hold a negative to a devastating impact on (fresh) water security, food security, public health, social conflicts, population displacement, and eventually political stability; and to strongly worsen the humanitarian situations in Somalia and Yemen, both in the medium-term (i.e., 2020-2050) and the long-term (i.e., 2020-2100). The authors call on the scientific community to further research the issue of climate change in the understudied coastal areas of the Gulf of Aden, and on the international community to pro-actively and urgently help the local populations and relevant authorities to rapidly and strongly build up their adaptation capacities, especially in the niche of coastal EEEs.</p>


Oceanography ◽  
2006 ◽  
Vol 19 (1) ◽  
pp. 130-141 ◽  
Author(s):  
Hans Graber ◽  
Vincent Cardone ◽  
Robert Jensen ◽  
Donald Slinn ◽  
Scott Hagen ◽  
...  

2011 ◽  
pp. 369-376
Author(s):  
TOMOHIRO YASUDA ◽  
NOBUHITO MORI ◽  
SOTA NAKAJO ◽  
HAJIME MASE ◽  
YUTA HAYASHI ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document