A Fast Computational Model for the Local Stress Distribution and Mechanical and Thermal Work Roll Deformations with Effects on Strip Profile and Flatness During Hot Rolling of Strip in Four-High Mills

Author(s):  
Christian Overhagen
2013 ◽  
Vol 24 (5) ◽  
pp. 1123-1133 ◽  
Author(s):  
H. Samareh Salavati Pour ◽  
H. Khademhosseini Beheshti ◽  
Y. Alizadeh ◽  
M. Poursina
Keyword(s):  

2010 ◽  
Vol 2 (1) ◽  
pp. 707-716 ◽  
Author(s):  
D. Benasciutti ◽  
E. Brusa ◽  
G. Bazzaro

2018 ◽  
Vol 15 ◽  
pp. 59-64 ◽  
Author(s):  
Nobuki Yukawa ◽  
Eiji Abe ◽  
Shohei Fujiwara

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 401
Author(s):  
Hainan He ◽  
Jian Shao ◽  
Xiaochen Wang ◽  
Quan Yang ◽  
Xiawei Feng

Due to the requirement of magnetic properties of silicon steel sheets, producing high-precision size strips is the main aim of the cold rolling industry. The tapered work roll shifting technique of the six-high cold rolling mill is effective in reducing the difference in transverse thickness of the strip edge, but the effective area is limited, especially for a high crown strip after the hot rolling process. The six-high mill with a small work roll size can produce a strip with higher strength and lower thickness under a smaller rolling load. At the same time, the profile of the strip can be substantially improved. By advancing a well-established analytical method, a series of simulation analyses are conducted to reveal the effectiveness of a small work roll radius for the strip profile in the six-high cold rolling process. Through the analysis of flattening deformation and deflection deformation on the load, the change rule of the strip profile produced by the work roll with a small roll diameter can be obtained. Combined with theoretical analysis and industrial experiments, it can be found that the improvement effect of the small work roll radius on the profile of the silicon strip is as significant.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 966 ◽  
Author(s):  
Kejun Hu ◽  
Fuxian Zhu ◽  
Jufang Chen ◽  
Nao-Aki Noda ◽  
Wenqin Han ◽  
...  

Considerable residual stress is produced during heat treatment. Compressive residual stress at the shell is conductive to improving the thermal fatigue life of a work roll, while tensile stress in the core could cause thermal breakage. In hot rolling, thermal stress occurs under the heating-cooling cycles over the roll surface due to the contact with the hot strip and water spray cooling. The combination of thermal stress and residual stress remarkably influences the life of a work roll. In this paper, finite element method (FEM) simulation of hot rolling is performed by treating the residual stress as the initial stress. Afterwards, the effects of the initial roll temperature and cooling conditions on thermal stress considering the initial residual stress are discussed. Lastly, the thermal fatigue life of a work roll is estimated based on the strain life model. The higher initial roll temperature causes a higher temperature but a lower compressive thermal stress at the roll surface. The surface temperature and compressive stress increase significantly in the insufficient cooling conditions, as well as the center tensile stress. The calculation of the fatigue life of a work roll based on the universal slopes model according to the 10% rule and 20% rule is reasonable compared with experimental results.


2005 ◽  
Vol 490-491 ◽  
pp. 35-40 ◽  
Author(s):  
Yoshihisa Sakaida ◽  
Yozo Sawaki ◽  
Keisuke Tanaka ◽  
Yoshiaki Akiniwa

Sign in / Sign up

Export Citation Format

Share Document