Wearable Textile-Based Device for Human Lower-Limbs Kinematics and Muscle Activity Sensing

Author(s):  
Liudmila Khokhlova ◽  
Marco Belcastro ◽  
Pasqualino Torchia ◽  
Brendan O’Flynn ◽  
Salvatore Tedesco
Author(s):  
Ross M. Neuman ◽  
Staci M. Shearin ◽  
Karen J. McCain ◽  
Nicholas P. Fey

Abstract Background Gait impairment is a common complication of multiple sclerosis (MS). Gait limitations such as limited hip flexion, foot drop, and knee hyperextension often require external devices like crutches, canes, and orthoses. The effects of mobility-assistive technologies (MATs) prescribed to people with MS are not well understood, and current devices do not cater to the specific needs of these individuals. To address this, a passive unilateral hip flexion-assisting orthosis (HFO) was developed that uses resistance bands spanning the hip joint to redirect energy in the gait cycle. The purpose of this study was to investigate the short-term effects of the HFO on gait mechanics and muscle activation for people with and without MS. We hypothesized that (1) hip flexion would increase in the limb wearing the device, and (2) that muscle activity would increase in hip extensors, and decrease in hip flexors and plantar flexors. Methods Five healthy subjects and five subjects with MS walked for minute-long sessions with the device using three different levels of band stiffness. We analyzed peak hip flexion and extension angles, lower limb joint work, and muscle activity in eight muscles on the lower limbs and trunk. Single-subjects analysis was used due to inter-subject variability. Results For subjects with MS, the HFO caused an increase in peak hip flexion angle and a decrease in peak hip extension angle, confirming our first hypothesis. Healthy subjects showed less pronounced kinematic changes when using the device. Power generated at the hip was increased in most subjects while using the HFO. The second hypothesis was not confirmed, as muscle activity showed inconsistent results, however several subjects demonstrated increased hip extensor and trunk muscle activity with the HFO. Conclusions This exploratory study showed that the HFO was well-tolerated by healthy subjects and subjects with MS, and that it promoted more normative kinematics at the hip for those with MS. Future studies with longer exposure to the HFO and personalized assistance parameters are needed to understand the efficacy of the HFO for mobility assistance and rehabilitation for people with MS.


2016 ◽  
Vol 28 (3) ◽  
pp. 1050-1054 ◽  
Author(s):  
Kenta Tanaka ◽  
Hiroshi Kamada ◽  
Yukiyo Shimizu ◽  
Shizu Aikawa ◽  
Shun Irie ◽  
...  

2013 ◽  
Vol 109 (8) ◽  
pp. 1996-2006 ◽  
Author(s):  
Hidehito Tomita ◽  
Yoshiki Fukaya ◽  
Kenji Totsuka ◽  
Yuri Tsukahara

This study aimed to determine whether individuals with spastic diplegic cerebral palsy (SDCP) have deficits in anticipatory inhibition of postural muscle activity. Nine individuals with SDCP (SDCP group, 3 female and 6 male, 13–24 yr of age) and nine age- and sex-matched individuals without disability (control group) participated in this study. Participants stood on a force platform, which was used to measure the position of the center of pressure (CoP), while holding a light or heavy load in front of their bodies. They then released the load by abducting both shoulders. Surface electromyograms were recorded from the rectus abdominis, erector spinae (ES), rectus femoris (RF), medial hamstring (MH), tibialis anterior (TA), and gastrocnemius (GcM) muscles. In the control group, anticipatory inhibition before load release and load-related modulation of the inhibition were observed in all the dorsal muscles recorded (ES, MH, and GcM). In the SDCP group, similar results were obtained in the trunk muscle (ES) but not in the lower limb muscles (MH and GcM), although individual differences were seen, especially in MH. Anticipatory activation of the ventral lower limb muscles (RF and TA) and load-related modulation of the activation were observed in both participant groups. CoP path length during load release was longer in the SDCP group than in the control group. The present findings suggest that individuals with SDCP exhibit deficits in anticipatory inhibition of postural muscles at the dorsal part of the lower limbs, which is likely to result in a larger disturbance of postural equilibrium.


2021 ◽  
Vol 150 (4) ◽  
pp. A289-A289
Author(s):  
Siddhartha Sikdar ◽  
Ahmed Bashatah ◽  
Joseph Majdi ◽  
Parag V. Chitnis

2005 ◽  
Vol 93 (2) ◽  
pp. 777-785 ◽  
Author(s):  
Noritaka Kawashima ◽  
Daichi Nozaki ◽  
Masaki O. Abe ◽  
Masami Akai ◽  
Kimitaka Nakazawa

It is now well recognized that muscle activity can be induced even in the paralyzed lower limb muscles of persons with spinal cord injury (SCI) by imposing locomotion-like movements on both of their legs. Although the significant role of the afferent input related to hip joint movement and body load has been emphasized considerably in previous studies, the contribution of the “alternate” leg movement pattern has not been fully investigated. This study was designed to investigate to what extent the alternate leg movement influenced this “locomotor-like” muscle activity. The knee-locked leg swing movement was imposed on 10 complete SCI subjects using a gait training apparatus. The following three different experimental conditions were adopted: 1) bilateral alternate leg movement, 2) unilateral leg movement, and 3) bilateral synchronous (in-phase) leg movement. In all experimental conditions, the passive leg movement induced EMG activity in the soleus and medial head of the gastrocnemius muscles in all SCI subjects and in the biceps femoris muscle in 8 of 10 SCI subjects. On the other hand, the EMG activity was not observed in the tibialis anterior and rectus femoris muscles. The EMG level of these activated muscles, as quantified by integrating the rectified EMG activity recorded from the right leg, was significantly larger for bilateral alternate leg movement than for unilateral and bilateral synchronous movements, although the right hip and ankle joint movements were identical in all experimental conditions. In addition, the difference in the pattern of the load applied to the leg among conditions was unable to explain the enhancement of EMG activity in the bilateral alternate leg movement condition. These results suggest that the sensory information generated by alternate leg movements plays a substantial role in amplifying the induced locomotor-like muscle activity in the lower limbs.


2019 ◽  
Vol 2 (3) ◽  
pp. 1
Author(s):  
Ryan Raymond Miller ◽  
Tyler Cluff

Background: Sensory feedback from receptors in the eyes, skin, vestibular organs and muscles allows us to build accurate representations of the position and motion of our body within the environment. In unpredictable situations, such as when holding an umbrella in gusting winds, studies have suggested the nervous system upregulates the sensitivity of sensory organs to counter disturbances and increase the probability of success. To date, studies have focused exclusively on the upregulation of feedback mechanisms in the lower-limbs during standing balance. We know comparatively little about whether and how sensory upregulation contributes to the control of upper limb motor actions. Objectives: Examine the upregulation and adaptation of upper limb muscle activity and spinal stretch reflexes when interacting with unpredictable mechanical environments. Methods: Ten healthy, right-handed adults (age range: 20 – 27 years) performed a postural control task where the goal was to maintain their hand within a fixed target. Participants performed the task while seated with their arm supported in an exoskeleton robot that can sense and disturb arm motion. They received real-time feedback of their movements on a virtual reality system. The protocol was delivered in three phases. The baseline phase consisted of 50 trials where subjects maintained their hand in the target in the absence of mechanical disturbances. Subjects then performed a peri-exposure phase that consisted of 100 null trials (no forces applied), 100 step-torque perturbations that produced rapid elbow flexion (+2Nm), and 100 perturbations that caused rapid elbow extension (-2Nm). We then unexpectedly removed the perturbations and subjects performed 75 trials to determine whether muscle activity returned to baseline levels. Kinematics and muscle activity were recorded throughout the experiment. Results: Preliminary results show that background muscle activity and spinal stretch reflexes were the largest when first exposed to unpredictable mechanical perturbations and adapted systematically with repeated exposure. Conclusions: Similar to results observed in the lower-limbs during standing balance experiments, we observed upregulation of background muscle activity and spinal stretch reflexes when interacting with unpredictable mechanical environments with the upper-limb. The amplitude of spinal stretch responses and background muscle activity decayed systematically with repeated exposure to unpredictable mechanical perturbations.


2020 ◽  
Vol 14 ◽  
Author(s):  
Akiyoshi Matsugi ◽  
Kosuke Oku ◽  
Nobuhiko Mori

Objective: This study aimed to investigate whether galvanic vestibular stimulation with stochastic noise (nGVS) modulates the body sway and muscle activity of the lower limbs, depending on visual and somatosensory information from the foot using rubber-foam.Methods: Seventeen healthy young adults participated in the study. Each subject maintained an upright standing position on a force plate with/without rubber-foam, with their eyes open/closed, to measure the position of their foot center of pressure. Thirty minutes after baseline measurements under four possible conditions (eyes open/closed with/without rubber-foam) performed without nGVS (intensity: 1 mA, duration: 40 s), the stimulation trials (sham-nGVS/real-nGVS) were conducted under the same conditions in random order, which were then repeated a week or more later. The total center of pressure (COP) path length movement (COP-TL) and COP movement velocity in the mediolateral (Vel-ML) and anteroposterior (Vel-AP) directions were recorded for 30 s during nGVS. Furthermore, electromyography activity of the right tibial anterior muscle and soleus muscle was recorded for the same time and analyzed.Results: Three-way analysis of variance and post-hoc multiple comparison revealed a significant increment in COP-related parameters by nGVS, and a significant increment in soleus muscle activity on rubber. There was no significant effect of eye condition on any parameter.Conclusions: During nGVS (1 mA), body sway and muscle activity in the lower limb may be increased depending not on the visual condition, but on the foot somatosensory condition.


Author(s):  
Masaya FUJITA ◽  
Toru TSUMUGIWA ◽  
Ryuichi YOKOGAWA

2018 ◽  
Vol 39 ◽  
pp. 35-41 ◽  
Author(s):  
Nader Farahpour ◽  
AmirAli Jafarnezhadgero ◽  
Paul Allard ◽  
Mahdi Majlesi

Sign in / Sign up

Export Citation Format

Share Document