Effectiveness of Double-Layer HDPE Geocell System to Reinforce Reclaimed Asphalt Pavement (RAP)-Base Layer

2021 ◽  
pp. 593-604
Author(s):  
Md. Ashrafuzzaman Khan ◽  
Nripojyoti Biswas ◽  
Aritra Banerjee ◽  
Surya Sarat Chandra Congress ◽  
Anand J. Puppala
2017 ◽  
Vol 44 (6) ◽  
pp. 417-425 ◽  
Author(s):  
E. Mousa ◽  
A. Azam ◽  
M. El-Shabrawy ◽  
S.M. El-Badawy

This paper presents the engineering characteristics of reclaimed asphalt pavement (RAP), blended with virgin aggregate for unbound base and subbase layers. The proportions of RAP were 0%, 20%, 60%, 80%, and 100% by total mass of the blend. The experimental laboratory testing included index properties such as gradation, modified Proctor compaction, California Bearing Ratio, and hydraulic conductivity. Repeated load resilient modulus testing was conducted on the blends. The impact of load duration on resilient modulus was also investigated. A strong inverse trend was found between resilient modulus and California Bearing Ratio. An accurate model was proposed for the prediction of the resilient modulus as a function of stress state and reclaimed asphalt pavement percentage with coefficient of determination of 0.94. Finally, multilayer elastic analysis of typical pavement sections with the base layer constructed of virgin aggregate and reclaimed asphalt pavement blends showed good performance.


2017 ◽  
Vol 138 ◽  
pp. 232-239 ◽  
Author(s):  
Cesare Sangiorgi ◽  
Piergiorgio Tataranni ◽  
Andrea Simone ◽  
Valeria Vignali ◽  
Claudio Lantieri ◽  
...  

Author(s):  
Anand J. Puppala ◽  
Aravind Pedarla ◽  
Bhaskar Chittoori ◽  
Vijay Krishna Ganne ◽  
Soheil Nazarian

For several years reclaimed asphalt pavement (RAP) material has been used as a construction material in hot-mix asphalt (HMA) to reduce material costs and stabilize pavements. Of the 45 million tons of RAP produced every year in the United States, only 33% is being used in HMA. Recent studies have demonstrated that RAP can be used effectively in base layers when it is blended with aggregate base materials and stabilized with cement or fly ash additives. This adoption in the pavement base layer helps maximize the reutilization of RAP material and minimize its disposal in landfills, thereby making it an environmentally friendly practice. However, studies reported so far addressed only the strength and stiffness characteristics of stabilized RAP in base layers in the short term, and not many studies have addressed its long-term behavior. In this study the long-term durability of untreated as well as stabilized specimens was tested by conducting standard durability testing to replicate the moisture fluctuations in the field from seasonal variations. In addition, leachate studies were conducted to examine the effect of rainfall infiltration on the leachability of the cement or fly ash stabilizer from stabilized RAP mixtures. Durability studies revealed a very low volumetric change and good retaining strength at the end of three, seven, and 14 cycles for RAP material from the El Paso, Texas, area, and leachate tests proved that the leaching of cement or fly ash stabilizer from RAP mixes cannot be considered to be a concern for long-term performance. However, approximately 2 years of field infiltration were replicated in the laboratory in this study. Of the several RAP mixtures studied, the mixture composed of 60% RAP and 40% base material with 2% cement was identified as an effective long-term-performing mixture.


2020 ◽  
Vol 841 ◽  
pp. 108-113
Author(s):  
Marcos Ariel Villanueva Guzmán ◽  
Horacio Delgado Alamilla ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
...  

Foamed bitumen improves the properties of base layer, increasing the number of equivalent axles allowed, as result of this is a durable pavement. To achieve this, base layer’s design must count with an amount of filler, to increase the stony aggregate fraction. This research consists with two different types of filler, lime and cement, 1% in dosage respect to the stony aggregate weight. Has been discovered now, that the RAP (reclaimed asphalt pavement) aggregate in addition to mitigate environmental problems, has a significant impact value on the mechanic resistance of the mix.


2012 ◽  
Vol 193-194 ◽  
pp. 184-187
Author(s):  
Jia Chong Du ◽  
Wan Chien Hung

Based on cost effectiveness, environmental impact, energy savings, and shortages of quality materials, reclaimed asphalt pavement (RAP) used for pavement construction does not only reduce aggregate need, but it also solves the problem of RAP disposal. Thus, the technology of cold mix recycling for pavement sub-base and base is introduced and tested in laboratory. The test results show that the recycled cold mix is a candidate material for pavement sub-base and base layer use. However, cold-mix emulsion asphalt used for recycling must be designed properly to ensure reliable performance. The unique features of recycled cold mixes are time temperature effects.


Sign in / Sign up

Export Citation Format

Share Document