Improving UWB Indoor Localization Accuracy Using Sparse Fingerprinting and Transfer Learning

Author(s):  
Krzysztof Adamkiewicz ◽  
Piotr Koch ◽  
Barbara Morawska ◽  
Piotr Lipiński ◽  
Krzysztof Lichy ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1015
Author(s):  
Yuqing Yin ◽  
Xu Yang ◽  
Peihao Li ◽  
Kaiwen Zhang ◽  
Pengpeng Chen ◽  
...  

Indoor localization provides robust solutions in many applications, and Wi-Fi-based methods are considered some of the most promising means for optimizing indoor fingerprinting localization accuracy. However, Wi-Fi signals are vulnerable to environmental variations, resulting in data across different times being subjected to different distributions. To solve this problem, this paper proposes an across-time indoor localization solution based on channel state information (CSI) fingerprinting via multi-domain representations and transfer component analysis (TCA). We represent the format of CSI readings in multiple domains, extending the characterization of fine-grained information. TCA, a domain adaptation method in transfer learning, is applied to shorten the distribution distances among several CSI readings, which overcomes various CSI distribution problems at different time periods. Finally, we present a modified Bayesian model averaging approach to integrate the multi-domain outcomes and give the estimated positions. We conducted test-bed experiments in three scenarios on both personal computer (PC) and smartphone platforms in which the source and target fingerprinting data were collected across different days. The experimental results showed that our method outperforms state-of-the-art methods in localization accuracy.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Author(s):  
Hang Li ◽  
Xi Chen ◽  
Ju Wang ◽  
Di Wu ◽  
Xue Liu

WiFi-based Device-free Passive (DfP) indoor localization systems liberate their users from carrying dedicated sensors or smartphones, and thus provide a non-intrusive and pleasant experience. Although existing fingerprint-based systems achieve sub-meter-level localization accuracy by training location classifiers/regressors on WiFi signal fingerprints, they are usually vulnerable to small variations in an environment. A daily change, e.g., displacement of a chair, may cause a big inconsistency between the recorded fingerprints and the real-time signals, leading to significant localization errors. In this paper, we introduce a Domain Adaptation WiFi (DAFI) localization approach to address the problem. DAFI formulates this fingerprint inconsistency issue as a domain adaptation problem, where the original environment is the source domain and the changed environment is the target domain. Directly applying existing domain adaptation methods to our specific problem is challenging, since it is generally hard to distinguish the variations in the different WiFi domains (i.e., signal changes caused by different environmental variations). DAFI embraces the following techniques to tackle this challenge. 1) DAFI aligns both marginal and conditional distributions of features in different domains. 2) Inside the target domain, DAFI squeezes the marginal distribution of every class to be more concentrated at its center. 3) Between two domains, DAFI conducts fine-grained alignment by forcing every target-domain class to better align with its source-domain counterpart. By doing these, DAFI outperforms the state of the art by up to 14.2% in real-world experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chong Han ◽  
Wenjing Xun ◽  
Lijuan Sun ◽  
Zhaoxiao Lin ◽  
Jian Guo

Wi-Fi-based indoor localization has received extensive attention in wireless sensing. However, most Wi-Fi-based indoor localization systems have complex models and high localization delays, which limit the universality of these localization methods. To solve these problems, a depthwise separable convolution-based passive indoor localization system (DSCP) is proposed. DSCP is a lightweight fingerprint-based localization system that includes an offline training phase and an online localization phase. In the offline training phase, the indoor scenario is first divided into different areas to set training locations for collecting CSI. Then, the amplitude differences of these CSI subcarriers are extracted to construct location fingerprints, thereby training the convolutional neural network (CNN). In the online localization phase, CSI data are first collected at the test locations, and then, the location fingerprint is extracted and finally fed to the trained network to obtain the predicted location. The experimental results show that DSCP has a short training time and a low localization delay. DSCP achieves a high localization accuracy, above 97%, and a small median localization distance error of 0.69 m in typical indoor scenarios.


2021 ◽  
pp. 242-249
Author(s):  
M.Shahkhir Mozamir ◽  
◽  
Rohani Binti Abu Bakar ◽  
Wan Isni Soffiah Wan Din ◽  
Zalili Binti Musa

Localization is one of the important matters for Wireless Sensor Networks (WSN) because various applications are depending on exact sensor nodes position. The problem in localization is the gained low accuracy in estimation process. Thus, this research is intended to increase the accuracy by overcome the problem in the Global best Local Neighborhood Particle Swarm Optimization (GbLN-PSO) to gain high accuracy. To compass this problem, an Improved Global best Local Neighborhood Particle Swarm Optimization (IGbLN-PSO) algorithm has been proposed. In IGbLN-PSO algorithm, there are consists of two phases: Exploration phase and Exploitation phase. The neighbor particles population that scattered around the main particles, help in the searching process to estimate the node location more accurately and gained lesser computational time. Simulation results demonstrated that the proposed algorithm have competence result compared to PSO, GbLN-PSO and TLBO algorithms in terms of localization accuracy at 0.02%, 0.01% and 59.16%. Computational time result shows the proposed algorithm less computational time at 80.07%, 17.73% and 0.3% compared others.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 875 ◽  
Author(s):  
Xiaochao Dang ◽  
Xiong Si ◽  
Zhanjun Hao ◽  
Yaning Huang

With the rapid development of wireless network technology, wireless passive indoor localization has become an increasingly important technique that is widely used in indoor location-based services. Channel state information (CSI) can provide more detailed and specific subcarrier information, which has gained the attention of researchers and has become an emphasis in indoor localization technology. However, existing research has generally adopted amplitude information for eigenvalue calculations. There are few research studies that have used phase information from CSI signals for localization purposes. To eliminate the signal interference existing in indoor environments, we present a passive human indoor localization method named FapFi, which fuses CSI amplitude and phase information to fully utilize richer signal characteristics to find location. In the offline stage, we filter out redundant values and outliers in the CSI amplitude information and then process the CSI phase information. A fusion method is utilized to store the processed amplitude and phase information as a fingerprint database. The experimental data from two typical laboratory and conference room environments were gathered and analyzed. The extensive experimental results demonstrate that the proposed algorithm is more efficient than other algorithms in data processing and achieves decimeter-level localization accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1645 ◽  
Author(s):  
Ryota Kimoto ◽  
Shigemi Ishida ◽  
Takahiro Yamamoto ◽  
Shigeaki Tagashira ◽  
Akira Fukuda

The deployment of a large-scale indoor sensor network faces a sensor localization problem because we need to manually locate significantly large numbers of sensors when Global Positioning System (GPS) is unavailable in an indoor environment. Fingerprinting localization is a popular indoor localization method relying on the received signal strength (RSS) of radio signals, which helps to solve the sensor localization problem. However, fingerprinting suffers from low accuracy because of an RSS instability, particularly in sensor localization, owing to low-power ZigBee modules used on sensor nodes. In this paper, we present MuCHLoc, a fingerprinting sensor localization system that improves the localization accuracy by utilizing channel diversity. The key idea of MuCHLoc is the extraction of channel diversity from the RSS of Wi-Fi access points (APs) measured on multiple ZigBee channels through fingerprinting localization. MuCHLoc overcomes the RSS instability by increasing the dimensions of the fingerprints using channel diversity. We conducted experiments collecting the RSS of Wi-Fi APs in a practical environment while switching the ZigBee channels, and evaluated the localization accuracy. The evaluations revealed that MuCHLoc improves the localization accuracy by approximately 15% compared to localization using a single channel. We also showed that MuCHLoc is effective in a dynamic radio environment where the radio propagation channel is unstable from the movement of objects including humans.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1463 ◽  
Author(s):  
André G. Ferreira ◽  
Duarte Fernandes ◽  
André P. Catarino ◽  
Ana M. Rocha ◽  
João L. Monteiro

Combining different technologies is gaining significant popularity among researchers and industry for the development of indoor positioning systems (IPSs). These hybrid IPSs emerge as a robust solution for indoor localization as the drawbacks of each technology can be mitigated or even eliminated by using complementary technologies. However, fusing position estimates from different technologies is still very challenging and, therefore, a hot research topic. In this work, we pose fusing the ultrawideband (UWB) position estimates with the estimates provided by a pedestrian dead reckoning (PDR) by using a Kalman filter. To improve the IPS accuracy, a decision-making algorithm was developed that aims to assess the usability of UWB measurements based on the identification of non-line-of-sight (NLOS) conditions. Three different data fusion algorithms are tested, based on three different time-of-arrival positioning algorithms, and experimental results show a localization accuracy of below 1.5 m for a 99th percentile.


Sign in / Sign up

Export Citation Format

Share Document