Experiences of Clinicians Using Rehabilitation Robotics

2021 ◽  
pp. 349-375
Author(s):  
Marcela Múnera ◽  
Maria J. Pinto-Bernal ◽  
Nathalie Zwickl ◽  
Angel Gil-Agudo ◽  
Patricio Barria ◽  
...  
Author(s):  
Chad G. Rose ◽  
Ashish D. Deshpande ◽  
Jacob Carducci ◽  
Jeremy D. Brown

2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Kaci E. Madden ◽  
Ashish D. Deshpande

The field of rehabilitation robotics has emerged to address the growing desire to improve therapy modalities after neurological disorders, such as a stroke. For rehabilitation robots to be successful as clinical devices, a number of mechanical design challenges must be addressed, including ergonomic interactions, weight and size minimization, and cost–time optimization. We present additive manufacturing (AM) as a compelling solution to these challenges by demonstrating how the integration of AM into the development process of a hand exoskeleton leads to critical design improvements and substantially reduces prototyping cost and time.


2001 ◽  
Vol 14 (7) ◽  
pp. 551-564 ◽  
Author(s):  
Noriyuki Tejima

1991 ◽  
Vol 13 (3) ◽  
pp. 239-243 ◽  
Author(s):  
M.R. Hillman ◽  
G.M. Pullin ◽  
A.R. Gammie ◽  
C.W. Stammers ◽  
R.D. Orpwood

Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Namjung Kim ◽  
Bongwon Jeong ◽  
Kiwon Park

Abstract In this paper, we present a systematic approach to improve the understanding of stability and robustness of stability against the external disturbances of a passive biped walker. First, a multi-objective, multi-modal particle swarm optimization (MOMM-PSO) algorithm was employed to suggest the appropriate initial conditions for a given biped walker model to be stable. The MOMM-PSO with ring topology and special crowding distance (SCD) used in this study can find multiple local minima under multiple objective functions by limiting each agent’s search area properly without determining a large number of parameters. Second, the robustness of stability under external disturbances was studied, considering an impact in the angular displacement sampled from the probabilistic distribution. The proposed systematic approach based on MOMM-PSO can find multiple initial conditions that lead the biped walker in the periodic gait, which could not be found by heuristic approaches in previous literature. In addition, the results from the proposed study showed that the robustness of stability might change depending on the location on a limit cycle where immediate angular displacement perturbation occurs. The observations of this study imply that the symmetry of the stable region about the limit cycle will break depending on the accelerating direction of inertia. We believe that the systematic approach developed in this study significantly increased the efficiency of finding the appropriate initial conditions of a given biped walker and the understanding of robustness of stability under the unexpected external disturbance. Furthermore, a novel methodology proposed for biped walkers in the present study may expand our understanding of human locomotion, which in turn may suggest clinical strategies for gait rehabilitation and help develop gait rehabilitation robotics.


AI Magazine ◽  
2015 ◽  
Vol 36 (4) ◽  
pp. 23-33 ◽  
Author(s):  
Domen Novak ◽  
Robert Riener

Rehabilitation robots physically support and guide a patient's limb during motor therapy, but require sophisticated control algorithms and artificial intelligence to do so. This article provides an overview of the state of the art in this area. It begins with the dominant paradigm of assistive control, from impedance-based cooperative controller through electromyography and intention estimation. It then covers challenge-based algorithms, which provide more difficult and complex tasks for the patient to perform through resistive control and error augmentation. Furthermore, it describes exercise adaptation algorithms that change the overall exercise intensity based on the patient's performance or physiological responses, as well as socially assistive robots that provide only verbal and visual guidance. The article concludes with a discussion of the current challenges in rehabilitation robot software: evaluating existing control strategies in a clinical setting as well as increasing the robot's autonomy using entirely new artificial intelligence techniques.


2015 ◽  
Vol 1115 ◽  
pp. 454-457 ◽  
Author(s):  
Alala M. Ba Hamid ◽  
Mohatashem R. Makhdoomi ◽  
Tanveer Saleh ◽  
Moinul Bhuiyan

In Malaysia, every year approximately 40000 people suffer from stroke and many of them become immobilized as an after effect. Rehabilitation robotics to assist disabled people has drawn significant attention by the researchers recently. This project also aims to contribute to this field. This paper presents a Shape Memory Alloy (SMA) actuated wearable assistive robotic hand for grasping. The proposed design is compact and sufficiently light to be used as an assistive hand. It is a joint less structure, has the potential because the human skeleton and joint replace the robot’s conventional structure. This design has been implemented on index and thumb fingers to enable grasping. Shape memory alloy springs and bias force mechanism are used for purpose of hand’s flexion and extension. This paper describes the mechatronic design of the wearable hand, experimental study of actuation unit and sensory system. Open loop experiments are conducted to understand the hand characterization and grip force provided by index finger. Current, temperature, extension and contraction of shape memory alloy springs are reported. This mechanism requires approximately 2A current for the SMA to actuate which provides maximum of 1.6N of gripping force. Conducted experiments show promising results that encourage further developments.


Sign in / Sign up

Export Citation Format

Share Document