scholarly journals Governing Decentral Energy Systems

2021 ◽  
pp. 159-174
Author(s):  
Peter Hettich

AbstractAgainst the backdrop of an energy system moving from vertically integrated monopolies towards a decentral system with a multitude of actors in ever-changing roles, we observe a gradual strengthening of central governance mechanisms on the nation-state and on the European level. Such a top-down approach to the governance of the energy system might have been necessary to open up energy markets to competitive processes and innovation. With social goals shifting and security of supply and environmental concerns gaining importance, the governance of the energy system has to be reshaped anew, enabling, e.g., the optimization of regional energy systems by local actors. In particular, strict unbundling rules may hinder or preclude system-serving behavior, to the detriment of all market participants and consumers. Lawmakers and regulators should provide some leeway to cooperative approaches, such as the empowerment of local actors to devise their own energy regimes.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 495
Author(s):  
Jessica Thomsen ◽  
Noha Saad Hussein ◽  
Arnold Dolderer ◽  
Christoph Kost

Due to the high complexity of detailed sector-coupling models, a perfect foresight optimization approach reaches complexity levels that either requires a reduction of covered time-steps or very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used. This paper examines the influence of the foresight horizon on local energy systems using the model DISTRICT. DISTRICT is characterized by its intersectoral approach to a regionally bound energy system with a connection to the superior electricity grid level. It is shown that with the advantage of a significantly reduced run-time, a limited foresight yields fairly similar results when the input parameters show a stable development. With unexpected, shock-like events, limited foresight shows more realistic results since it cannot foresee the sudden parameter changes. In general, the limited foresight approach tends to invest into generation technologies with low variable cost and avoids investing into demand reduction or efficiency with high upfront costs as it cannot compute the benefits over the time span necessary for full cost recovery. These aspects should be considered when choosing the foresight horizon.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2263 ◽  
Author(s):  
Romano Wyss ◽  
Susan Mühlemeier ◽  
Claudia Binder

In this paper, we apply an indicator-based approach to measure the resilience of energy regions in transition to a case study region in Austria. The indicator-based approach allows to determine the resilience of the transition of regional energy systems towards higher shares of renewables and potentially overall higher sustainability. The indicators are based on two core aspects of resilience, diversity and connectivity. Diversity is thereby operationalized by variety, disparity and balance, whereas connectivity is operationalized by average path length, degree centrality and modularity. In order to get a full picture of the resilience of the energy system at stake throughout time, we apply the measures to four distinct moments, situated in the pre-development, take-off, acceleration and stabilization phase of the transition. By contextually and theoretically embedding the insights in the broader transitions context and empirically applying the indicators to a specific case, we derive insights on (1) how to interpret the results in a regional context and (2) how to further develop the indicator-based approach for future applications.


2014 ◽  
Vol 18 (3) ◽  
pp. 771-786 ◽  
Author(s):  
Stephan Hausl ◽  
Matthias Themessl ◽  
Sabine Gadocha ◽  
Ingrid Schardinger ◽  
Markus Biberacher ◽  
...  

Climate change affects regions differently and therefore also climate change effects on energy systems need to be analyzed region specific. The objective of the study presented is to show and analyze these effects on regional energy systems following a high spatial resolution approach. Three regional climate scenarios are downscaled to a 1 km resolution and error corrected for three different testing regions in Austria. These climate data are used to analyze effects of climate change on heating and cooling demand until the year 2050. Potentials of renewable energies such as solar thermal, photovoltaic, ambient heat and biomass are also examined. In the last process step the outcomes of the previous calculations are fed into two energy system models, where energy system optimizations are executed, which provide information concerning optimal setups and operations of future energy systems. Due to changing climate strong changes for the energy demand structure are noticed; lower heat demand in winter (between -7 and -15% until 2050) and - strongly differing between regions - higher cooling demand in summer (up to +355%). Optimization results show that the composition of energy supply carriers is barely affected by climate change, since other developments such as refurbishment actions, price developments and regional biomass availabilities are more influencing within this context.


Energy ◽  
1987 ◽  
Vol 12 (12) ◽  
pp. 1329-1332 ◽  
Author(s):  
K. Leledakis ◽  
T. Goumas ◽  
J.-E. Samouilidis

Sign in / Sign up

Export Citation Format

Share Document