scholarly journals Effects of climate change on regional energy systems focussing on space heating and cooling: A case study of Austria

2014 ◽  
Vol 18 (3) ◽  
pp. 771-786 ◽  
Author(s):  
Stephan Hausl ◽  
Matthias Themessl ◽  
Sabine Gadocha ◽  
Ingrid Schardinger ◽  
Markus Biberacher ◽  
...  

Climate change affects regions differently and therefore also climate change effects on energy systems need to be analyzed region specific. The objective of the study presented is to show and analyze these effects on regional energy systems following a high spatial resolution approach. Three regional climate scenarios are downscaled to a 1 km resolution and error corrected for three different testing regions in Austria. These climate data are used to analyze effects of climate change on heating and cooling demand until the year 2050. Potentials of renewable energies such as solar thermal, photovoltaic, ambient heat and biomass are also examined. In the last process step the outcomes of the previous calculations are fed into two energy system models, where energy system optimizations are executed, which provide information concerning optimal setups and operations of future energy systems. Due to changing climate strong changes for the energy demand structure are noticed; lower heat demand in winter (between -7 and -15% until 2050) and - strongly differing between regions - higher cooling demand in summer (up to +355%). Optimization results show that the composition of energy supply carriers is barely affected by climate change, since other developments such as refurbishment actions, price developments and regional biomass availabilities are more influencing within this context.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 495
Author(s):  
Jessica Thomsen ◽  
Noha Saad Hussein ◽  
Arnold Dolderer ◽  
Christoph Kost

Due to the high complexity of detailed sector-coupling models, a perfect foresight optimization approach reaches complexity levels that either requires a reduction of covered time-steps or very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used. This paper examines the influence of the foresight horizon on local energy systems using the model DISTRICT. DISTRICT is characterized by its intersectoral approach to a regionally bound energy system with a connection to the superior electricity grid level. It is shown that with the advantage of a significantly reduced run-time, a limited foresight yields fairly similar results when the input parameters show a stable development. With unexpected, shock-like events, limited foresight shows more realistic results since it cannot foresee the sudden parameter changes. In general, the limited foresight approach tends to invest into generation technologies with low variable cost and avoids investing into demand reduction or efficiency with high upfront costs as it cannot compute the benefits over the time span necessary for full cost recovery. These aspects should be considered when choosing the foresight horizon.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2263 ◽  
Author(s):  
Romano Wyss ◽  
Susan Mühlemeier ◽  
Claudia Binder

In this paper, we apply an indicator-based approach to measure the resilience of energy regions in transition to a case study region in Austria. The indicator-based approach allows to determine the resilience of the transition of regional energy systems towards higher shares of renewables and potentially overall higher sustainability. The indicators are based on two core aspects of resilience, diversity and connectivity. Diversity is thereby operationalized by variety, disparity and balance, whereas connectivity is operationalized by average path length, degree centrality and modularity. In order to get a full picture of the resilience of the energy system at stake throughout time, we apply the measures to four distinct moments, situated in the pre-development, take-off, acceleration and stabilization phase of the transition. By contextually and theoretically embedding the insights in the broader transitions context and empirically applying the indicators to a specific case, we derive insights on (1) how to interpret the results in a regional context and (2) how to further develop the indicator-based approach for future applications.


2021 ◽  
pp. 159-174
Author(s):  
Peter Hettich

AbstractAgainst the backdrop of an energy system moving from vertically integrated monopolies towards a decentral system with a multitude of actors in ever-changing roles, we observe a gradual strengthening of central governance mechanisms on the nation-state and on the European level. Such a top-down approach to the governance of the energy system might have been necessary to open up energy markets to competitive processes and innovation. With social goals shifting and security of supply and environmental concerns gaining importance, the governance of the energy system has to be reshaped anew, enabling, e.g., the optimization of regional energy systems by local actors. In particular, strict unbundling rules may hinder or preclude system-serving behavior, to the detriment of all market participants and consumers. Lawmakers and regulators should provide some leeway to cooperative approaches, such as the empowerment of local actors to devise their own energy regimes.


2020 ◽  
Vol 16 ◽  
pp. 1208-1223
Author(s):  
Lazar D. Gitelman ◽  
Vladimir V. Dobrodey ◽  
Mikhail V. Kozhevnikov

Nowadays, it is relevant to consider changes in the structure of the fuel and energy balance of industrial regions and the availability of imported fuel and energy resources, especially in the areas that lack energy sources. The ongoing structural shifts in energy consumption systems and the growing uncertainty in energy markets encourage the development of tools for improving the sustainable development of regional energy systems. To refine the theoretical and methodological basis of the study, we defined its conceptual framework, described the difference s betwee n sustainabl e functionin g an d developmen t o f th e energy sector and determined the factors of its regional differentiation and manifestations of the energy crisis. Further, we identified the shortcomings of the existing methods for forecasting the demand for electricity. We paid special attention to quality factors of strategic planning in the region, in particular, the used statistics and documents. Based on the analysis of integrated resource planning (IRP) methodology, our experience in forecasting fuel and energy balances, assessment of sectoral indicators of energy efficiency and energy demand in the region, we proposed a model for predictive and analytical justification of regional programmes for energy development. Such a model significantly increases the information reliability of these programmes’ implementation. Considering organisational tools to support sustainable development, we developed a regional energy management scheme and a mechanism stimulating local energy companies to improve energy efficiency in the consumption sector, enhance regional competition and attract investments in the renewal of fixed assets. The study has practical significance due to recommendations and tools for adjusting regional energy policy based on the coordination of the predicted parameters for various participants in the energy supply process.


2020 ◽  
Vol 23 ◽  
Author(s):  
Flávia Mendes de Almeida Collaço ◽  
Raiana Schirmer Soares ◽  
João Marcos Mott Pavanelli ◽  
Lira Luz Benites-Lazaro ◽  
Guilherme Massignan Berejuk ◽  
...  

Abstract This paper analyzes the historical trends in the energy supply and demand for the Macrometrópole Paulista Energy System, as well as the existing options for harnessing the renewable energy potential of the region. The research included a case study covering the 174 municipalities that belong to the macro-metropolis to characterize the energy system from 2006 to 2017 while analyzing the CO2 emissions of the system. The results indicated that, in 2017, the Paulista macro-metropolis accounted for 73% of the total energy demand of the entire state of São Paulo. Moreover, considering the energy generated from within the administrative limits of the 174 municipalities, the macro-metropolis accounted for about 17% of the total installed capacity of the state for electricity generation. This study found that the installed capacity for electricity generation in the region can be increased by ~ 112%. There so, an understanding of the local energy systems is of utmost importance for the formulation of coherent and integrated public policies, which are necessary to cope with the effects of climate change.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5799
Author(s):  
Stella Tsoka ◽  
Kondylia Velikou ◽  
Konstantia Tolika ◽  
Aikaterini Tsikaloudaki

Climate change has a major impact on the urban built environment, both with respect to the heating and cooling energy requirements, but also regarding the higher probability of confronting extreme events such as heatwaves. In parallel, the ongoing urbanization, the urban microclimate and the formation of the urban heat island effect, compounding the ongoing climate change, is also a considerable determinant of the building’s energy behavior and the outdoor thermal environment. To evaluate the magnitude of the complex phenomenon, the current research investigates the effect of climate change and urban heat island on heating and cooling energy needs of an urban building unit in Thessaloniki, Greece. The study comparatively evaluates different tools for the generation of future weather datasets, considering both statistical and dynamical downscaling methods, with the latter involving the use of a regional climate model. Based on the output of the regional climate model, another future weather dataset is created, considering not only the general climatic conditions, but also the microclimatic parameters of the examined case study area, under the future climate projections. The generated future weather datasets are then used as an input parameter in the dynamic energy performance simulations with EnergyPlus. For all examined weather datasets, the simulation results show a decrease of the heating energy use, an effect that is strongly counterbalanced by the rise of the cooling energy demand. The obtained simulation results also reveal the contribution of the urban warming of the ongoing climate change, demonstrating the need to perform a holistic analysis for the buildings’ energy needs under future climate conditions.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2879
Author(s):  
Xinxin Liu ◽  
Nan Li ◽  
Feng Liu ◽  
Hailin Mu ◽  
Longxi Li ◽  
...  

Optimal design of regional integrated energy systems (RIES) offers great potential for better managing energy sources, lower costs and reducing environmental impact. To capture the transition process from fossil fuel to renewable energy, a flexible RIES, including the traditional energy system (TES) based on the coal and biomass based distributed energy system (BDES), was designed to meet a regional multiple energy demand. In this paper, we analyze multiple scenarios based on a new rural community in Dalian (China) to capture the relationship among the energy supply cost, increased share of biomass, system configuration transformation, and renewable subsidy according to regional CO2 emission abatement control targets. A mixed integer linear programming (MILP) model was developed to find the optimal solutions. The results indicated that a 40.58% increase in the share of biomass in the RIES was the most cost-effective way as compared to the separate TES and BDES. Based on the RIES with minimal cost, by setting a CO2 emission reduction control within 40%, the RIES could ensure a competitive total annual cost as compared to the TES. In addition, when the reduction control exceeds 40%, a subsidy of 53.83 to 261.26 RMB/t of biomass would be needed to cover the extra cost to further increase the share of biomass resource and decrease the CO2 emission.


Author(s):  
Ivo Machar ◽  
Marián Halás ◽  
Zdeněk Opršal

Regional climate changes impacts induce vegetation zones shift to higher altitudes in temperate landscape. This paper deals with applying of regional biogeography model of climate conditions for vegetation zones in Czechia to doctoral programme Regional Geography in Palacky University Olomouc. The model is based on general knowledge of landscape vegetation zonation. Climate data for model come from predicted validated climate database under RCP8.5 scenario since 2100. Ecological data are included in the Biogeography Register database (geobiocoenological data related to landscape for cadastral areas of the Czech Republic). Mathematical principles of modelling are based on set of software solutions with GIS. Students use the model in the frame of the course “Special Approaches to Landscape Research” not only for regional scenarios climate change impacts in landscape scale, but also for assessment of climate conditions for growing capability of agricultural crops or forest trees under climate change on regional level.


Sign in / Sign up

Export Citation Format

Share Document