Turbulence Characteristics in a Rough Open Channel Under Unsteady Flow Conditions

Author(s):  
Jnana Ranjan Khuntia ◽  
Kamalini Devi ◽  
Bhabani Shankar Das ◽  
Kishanjit Kumar Khatua
2014 ◽  
Vol 905 ◽  
pp. 369-373
Author(s):  
Choo Tai Ho ◽  
Yoon Hyeon Cheol ◽  
Yun Gwan Seon ◽  
Noh Hyun Suk ◽  
Bae Chang Yeon

The estimation of a river discharge by using a mean velocity equation is very convenient and rational. Nevertheless, a research on an equation calculating a mean velocity in a river was not entirely satisfactory after the development of Chezy and Mannings formulas which are uniform equations. In this paper, accordingly, the mean velocity in unsteady flow conditions which are shown loop form properties was estimated by using a new mean velocity formula derived from Chius 2-D velocity formula. The results showed that the proposed method was more accurate in estimating discharge, when compared with the conventional formulas.


2018 ◽  
Vol 40 ◽  
pp. 05071 ◽  
Author(s):  
Jnana Ranjan Khuntia ◽  
Kamalini Devi ◽  
Sebastien Proust ◽  
Kishanjit Kumar Khatua

Very few studies have been carried out in the past in estimating depth-averaged velocity and bed shear stress in unsteady flow over rough beds. An experiment is thus conducted to investigate the vertical and lateral velocity profiles under unsteady flow conditions in a rough open channel for various flow depths. One hydrogram is repeatedly passed through the rectangular flume with a fixed rigid grass bed. Using micro Pitot tube and Acoustic Doppler Velocimeter (ADV), the flow patterns are investigated at both lateral and longitudinal positions over different cross-sections. For two typical flow depths, the velocities in both the rising limb and falling limb are observed. Hysteresis effect between stage-discharge (h ~ Q) rating curve between rising and falling limbs is illustrated. Lateral distribution of depth-averaged velocity and bed shear stress are plotted at three different cross sections and compared with the steady flow conditions. In falling limb of an unsteady flow case, both depth-averaged velocity and bed shear stress distribution in the central region is higher than that of steady flow case. However, in the rising limb, the bed shear stress of unsteady flow is less than that of steady flow case. Further, in an unsteady flow, the magnitude of depth-averaged velocity is found to increase towards the downstream sections. Along the downstream positions, bed shear stress values increase for lower flow depths and decrease for higher flow depth cases.


2005 ◽  
Vol 29 (2) ◽  
pp. 89-113 ◽  
Author(s):  
Niels Troldborg

A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risø-B1-18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decrease fatigue-inducing oscillations on the blades. The computations were conducted using a 2D incompressible RANS solver with a k-w turbulence model under the assumption of a fully developed turbulent flow. The investigations were conducted at a Reynolds number of Re = 1.6 · 106. Calculations conducted on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice.


2017 ◽  
Author(s):  
A. F. Totorean ◽  
S. I. Bernad ◽  
I. C. Hudrea ◽  
R. F. Susan-Resiga

Sadhana ◽  
2016 ◽  
Vol 41 (9) ◽  
pp. 1019-1037
Author(s):  
Prashanth Reddy Hanmaiahgari ◽  
Ram Balachandar

Sign in / Sign up

Export Citation Format

Share Document