Secure Recommendation System for Healthcare Applications Using Artificial Intelligence

Author(s):  
N. Deepa ◽  
R. Naresh ◽  
M. Kanchana ◽  
P. Pandiaraja ◽  
Thompson Stephan
2020 ◽  
Vol 10 (18) ◽  
pp. 6553
Author(s):  
Sabrina Azzi ◽  
Stéphane Gagnon ◽  
Alex Ramirez ◽  
Gregory Richards

Healthcare is considered as one of the most promising application areas for artificial intelligence and analytics (AIA) just after the emergence of the latter. AI combined to analytics technologies is increasingly changing medical practice and healthcare in an impressive way using efficient algorithms from various branches of information technology (IT). Indeed, numerous works are published every year in several universities and innovation centers worldwide, but there are concerns about progress in their effective success. There are growing examples of AIA being implemented in healthcare with promising results. This review paper summarizes the past 5 years of healthcare applications of AIA, across different techniques and medical specialties, and discusses the current issues and challenges, related to this revolutionary technology. A total of 24,782 articles were identified. The aim of this paper is to provide the research community with the necessary background to push this field even further and propose a framework that will help integrate diverse AIA technologies around patient needs in various healthcare contexts, especially for chronic care patients, who present the most complex comorbidities and care needs.


Intexto ◽  
2019 ◽  
pp. 166-184
Author(s):  
João Damasceno Martins Ladeira

This article discusses the Netflix recommendation system, expecting to understand these techniques as a part of the contemporary strategies for the reorganization of television and audiovisual. It renders problematic a technology indispensable to these suggestions: the tools for artificial intelligence, expecting to infer questions of cultural impact inscribed in this technique. These recommendations will be analyzed in their relationship with the formerly decisive form for the constitution of broadcast: the television flow. The text investigates the meaning such influential tools at the definition of a television based on the manipulation of collections, and not in the predetermined programming, decided previously to the transmission of content. The conclusion explores the consequences of these archives, which concedes to the user a sensation of choice in tension with the mechanical character of those images.


Author(s):  
Lu Pang

In order to improve the accuracy of intelligent recommendation of library books, an intelligent recommendation system of library books based on artificial intelligence was designed. The system uses artificial intelligence technology to clean up and normalize the data, automatically extracts the user’s historical evaluation data of books, divides the whole user space into several similar user clusters through the similar user clustering module, constructs the user book evaluation matrix according to the historical evaluation data, and uses the hybrid collaborative filtering algorithm which integrates user based and project-based to predict each user a book evaluation matrix of similar user clusters was used to realize the intelligent recommendation of library books, and the recommendation results were displayed to users through the user interface module. The results show that the average absolute error and root mean square error of the system are always the lowest, and the recommendation accuracy is high. When the control parameter is 0.4, the best intelligent book recommendation effect can be obtained; the recommended recall rate is not affected by the sparse density of the data set, and the stability is strong.


Author(s):  
David Mendes ◽  
Irene Pimenta Rodrigues

The ISO/HL7 27931:2009 standard intends to establish a global interoperability framework for healthcare applications. However, being a messaging related protocol, it lacks a semantic foundation for interoperability at a machine treatable level intended through the Semantic Web. There is no alignment between the HL7 V2.xml message payloads and a meaning service like a suitable ontology. Careful application of Semantic Web tools and concepts can ease the path to the fundamental concept of Shared Semantics. In this chapter, the Semantic Web and Artificial Intelligence tools and techniques that allow aligned ontology population are presented and their applicability discussed. The authors present the coverage of HL7 RIM inadequacy for ontology mapping and how to circumvent it, NLP techniques for semi-automated ontology population, and the current trends about knowledge representation and reasoning that concur to the proposed achievement.


Sign in / Sign up

Export Citation Format

Share Document