Research on Course Recommendation System Based on Artificial Intelligence

Author(s):  
Fuqiang Zong ◽  
Deyi San ◽  
Weicheng Cui
Intexto ◽  
2019 ◽  
pp. 166-184
Author(s):  
João Damasceno Martins Ladeira

This article discusses the Netflix recommendation system, expecting to understand these techniques as a part of the contemporary strategies for the reorganization of television and audiovisual. It renders problematic a technology indispensable to these suggestions: the tools for artificial intelligence, expecting to infer questions of cultural impact inscribed in this technique. These recommendations will be analyzed in their relationship with the formerly decisive form for the constitution of broadcast: the television flow. The text investigates the meaning such influential tools at the definition of a television based on the manipulation of collections, and not in the predetermined programming, decided previously to the transmission of content. The conclusion explores the consequences of these archives, which concedes to the user a sensation of choice in tension with the mechanical character of those images.


Author(s):  
Lu Pang

In order to improve the accuracy of intelligent recommendation of library books, an intelligent recommendation system of library books based on artificial intelligence was designed. The system uses artificial intelligence technology to clean up and normalize the data, automatically extracts the user’s historical evaluation data of books, divides the whole user space into several similar user clusters through the similar user clustering module, constructs the user book evaluation matrix according to the historical evaluation data, and uses the hybrid collaborative filtering algorithm which integrates user based and project-based to predict each user a book evaluation matrix of similar user clusters was used to realize the intelligent recommendation of library books, and the recommendation results were displayed to users through the user interface module. The results show that the average absolute error and root mean square error of the system are always the lowest, and the recommendation accuracy is high. When the control parameter is 0.4, the best intelligent book recommendation effect can be obtained; the recommended recall rate is not affected by the sparse density of the data set, and the stability is strong.


Author(s):  
Andreas Aresti ◽  
Penelope Markellou ◽  
Ioanna Mousourouli ◽  
Spiros Sirmakessis ◽  
Athanasios Tsakalidis

Recommendation systems are special personalization tools that help users to find interesting information and services in complex online shops. Even though today’s e-commerce environments have drastically evolved and now incorporate techniques from other domains and application areas such as Web mining, semantics, artificial intelligence, user modeling, and profiling setting up a successful recommendation system is not a trivial or straightforward task. This chapter argues that by monitoring, analyzing, and understanding the behavior of customers, their demographics, opinions, preferences, and history, as well as taking into consideration the specific e-shop ontology and by applying Web mining techniques, the effectiveness of produced recommendations can be significantly improved. In this way, the e-shop may upgrade users’ interaction, increase its usability, convert users to buyers, retain current customers, and establish long-term and loyal one-to-one relationships.


2022 ◽  
pp. 33-45
Author(s):  
Şeyma Çağlar Özhan ◽  
Arif Altun

Teaching practicum is an essential component of any teacher training program. It usually involves theoretical knowledge related to content and teaching in general, classroom management strategies, and skills utilized when confronted with challenging situations. Distance learning tools may impact knowledge transfer. Using artificial intelligence-based virtual classrooms posed a challenge for pre-service teachers to address teaching and learning due to the COVID-19 pandemic. This study addresses incorporating an artificial intelligence-based virtual classroom environment with a recommendation feature as an open-access software to help pre-service teachers develop their teaching skills. Also, the study addresses recommendations to support educators' professional development. Finally, further recommendations and future directions provide thought-provoking ideas for using artificial intelligence-based virtual settings for teaching.


10.2196/24163 ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. e24163
Author(s):  
Md Mohaimenul Islam ◽  
Hsuan-Chia Yang ◽  
Tahmina Nasrin Poly ◽  
Yu-Chuan Jack Li

Background Laboratory tests are considered an essential part of patient safety as patients’ screening, diagnosis, and follow-up are solely based on laboratory tests. Diagnosis of patients could be wrong, missed, or delayed if laboratory tests are performed erroneously. However, recognizing the value of correct laboratory test ordering remains underestimated by policymakers and clinicians. Nowadays, artificial intelligence methods such as machine learning and deep learning (DL) have been extensively used as powerful tools for pattern recognition in large data sets. Therefore, developing an automated laboratory test recommendation tool using available data from electronic health records (EHRs) could support current clinical practice. Objective The objective of this study was to develop an artificial intelligence–based automated model that can provide laboratory tests recommendation based on simple variables available in EHRs. Methods A retrospective analysis of the National Health Insurance database between January 1, 2013, and December 31, 2013, was performed. We reviewed the record of all patients who visited the cardiology department at least once and were prescribed laboratory tests. The data set was split into training and testing sets (80:20) to develop the DL model. In the internal validation, 25% of data were randomly selected from the training set to evaluate the performance of this model. Results We used the area under the receiver operating characteristic curve, precision, recall, and hamming loss as comparative measures. A total of 129,938 prescriptions were used in our model. The DL-based automated recommendation system for laboratory tests achieved a significantly higher area under the receiver operating characteristic curve (AUROCmacro and AUROCmicro of 0.76 and 0.87, respectively). Using a low cutoff, the model identified appropriate laboratory tests with 99% sensitivity. Conclusions The developed artificial intelligence model based on DL exhibited good discriminative capability for predicting laboratory tests using routinely collected EHR data. Utilization of DL approaches can facilitate optimal laboratory test selection for patients, which may in turn improve patient safety. However, future study is recommended to assess the cost-effectiveness for implementing this model in real-world clinical settings.


2021 ◽  
Vol 18 (1) ◽  
pp. 27-35
Author(s):  
Roman B. Kupriyanov ◽  
Dmitry L. Agranat ◽  
Ruslan S. Suleymanov

Problem and goal. Developed and tested solutions for building individual educational trajectories of students, focused on improving the educational process by forming a personalized set of recommendations from the optional disciplines. Methodology. Data mining and machine learning methods were used to process both numeric and textual data. The approaches based on collaborative and content filtering to generate recommendations for students were also used. Results. Testing of the developed system was carried out in the context of several periods of elective courses selection, in which 4,769 first- and second-year students took part. A set of recommendations was automatically generated for each student, and then the quality of the recommendations was evaluated based on the percentage of students who used these recommendations. According to the results of testing, the recommendations were used by 1,976 students, which was 41.43% of the total number of participants. Conclusion. In the study, a recommendation system was developed that performs automatic ranking of subjects of choice and forms a personalized set of recommendations for each student based on their interests for building individual educational trajectories.


Sign in / Sign up

Export Citation Format

Share Document