scholarly journals Charged Particles in Near-Earth Space

2021 ◽  
pp. 27-61
Author(s):  
Hannu E. J. Koskinen ◽  
Emilia K. J. Kilpua

AbstractIn this chapter we discuss the concepts that govern the motion of charged particles in the geomagnetic field and the principles how they stay trapped in the radiation belts. The basic particle orbit theory can be found in most plasma physics textbooks. We partly follow the presentation in Koskinen (Physics of space storms, from solar surface to the earth. Springer-Praxis, Heidelberg, 2011). A more detailed discussion can be found in Roederer and Zhang (Dynamics of magnetically trapped particles. Springer, Heidelberg, 2014). A classic treatment of adiabatic motion of charged particles is Northrop (The adiabatic motion of charged particles. Interscience Publishers, Wiley, New York, 1963).

2021 ◽  
pp. 159-211
Author(s):  
Hannu E. J. Koskinen ◽  
Emilia K. J. Kilpua

AbstractThe main sources of charged particles in the Earth’s inner magnetosphere are the Sun and the Earth’s ionosphere. Furthermore, the Galactic cosmic radiation is an important source of protons in the inner radiation belt, and roughly every 13 years, when the Earth and Jupiter are connected via the interplanetary magnetic field, a small number of electrons originating from the magnetosphere of Jupiter are observed in the near-Earth space. The energies of solar wind and ionospheric plasma particles are much smaller than the particle energies in radiation belts. A major scientific task is to understand the transport and acceleration processes leading to the observed populations up to relativistic energies. Equally important is to understand the losses of the charged particles. The great variability of the outer electron belt is a manifestation of the continuously changing balance between source and loss mechanisms, whereas the inner belt is much more stable.


Physics Today ◽  
1964 ◽  
Vol 17 (4) ◽  
pp. 80-80
Author(s):  
Theodore G. Northrop ◽  
R. E. Marshak ◽  
Ernest P. Gray

2021 ◽  
Vol 7 (3) ◽  
pp. 105-113
Author(s):  
Vyacheslav Pilipenko ◽  
Eugeny Fedorov ◽  
Nikolay Mazur ◽  
Stanislav Klimov

We present an overview, based on satellite observations at low Earth orbits, on electromagnetic radiation from ground power transmission lines at an industrial frequency 50–60 Hz. Particular attention has been given to Chibis-M and DEMETER satellite observations. The electric 40-cm antenna of the micro-satellite often recorded 50–60 Hz radiation (known as Power Line Emission (PLE)) when it flew over industrialized areas of the planet. The PLE spectral amplitude varied from 1.2 to 18 (μV/m)/Hz0.5, which corresponds to the electric field amplitude E~1 μV/m. We report results of numerical calculations of the electromagnetic response of the atmosphere and ionosphere to a large-scale surface emitter at a frequency of 50 Hz. According to simulation results, PLE with an intensity of ~1 μV/m observed on satellites in the nightside ionosphere at midlatitudes can be excited by an unbalanced current 8–10 A in a power transmission line above the earth's crust with conductivity of 10–3 S/m. At middle and low latitudes with an inclined geomagnetic field, the maximum response in the upper ionosphere to the transmission line radiation should be seen shifted equatorward, although this shift is less than that upon guidance by the geomagnetic field. The maximum amplitude of the electromagnetic response of the ionosphere to the power transmission line emission decreases for an inclined geomagnetic field, but insignificantly. To date, the PLE intensity in near-Earth space has turned out to be higher than the intensity of natural radiation in this range (Schumann resonances and ion whistlers), and continues to grow with the technological development of mankind.


Author(s):  
J. Byrne

SynopsisThe adiabatic invariants associated with the motion of charged particles, trapped in electromagnetic fields with rotational and reflection symmetry, have been studied using classical methods based on the Hamilton-Jacobi equation. It has been shown that results, valid for trapping in purely magnetic configurations, may be applied in the analysis of electromagnetic charged particle traps, provided that suitably modified expressions are used for the angular frequencies in the various dynamical modes. Attention is drawn to circumstances in which the adiabatic conditions may be violated because of cancellation of electric and magnetic terms in the equations.


1964 ◽  
Vol 32 (7) ◽  
pp. 556-558 ◽  
Author(s):  
P. Mallozzi

Sign in / Sign up

Export Citation Format

Share Document