Deep Convolutional Neural Networks with Residual Blocks for Wafer Map Defect Pattern Recognition

2021 ◽  
pp. 372-384
Author(s):  
Zemenu Endalamaw Amogne ◽  
Fu-Kwun Wang ◽  
Jia-Hong Chou

Deep convolutional neural networks (CNN) have attracted many attentions of researchers in the field of artificial intelligence. Based on several well-known architectures, more researchers and designers have joined the field of applying deep learning and devising a large number of CNNs for processing datasets of interesting. Equipped with modern audio, video, screen-touching components, and other sensors for online pattern recognition, the iOS mobile devices provide developers and users friendly testing and powerful computing environments. This chapter introduces the trend of developing pattern recognition CNN Apps on iOS devices and the neural organization of convolutional neural networks. Deep learning in Matlab and executing CNN models on iOS devices are introduced following the motivation of combining mathematical modelling and computation with neural architectures for developing pattern recognition iOS apps. This chapter also gives contexts of discussing typical hidden layers in the CNN architecture.


2021 ◽  
Vol 38 (5) ◽  
pp. 1319-1326
Author(s):  
Hidir Selcuk Nogay

Fingerprint pattern recognition is of great importance in forensic examinations and in helping diagnose some diseases. The automatic realization of fingerprint recognition processes can take time due to the feature extraction process in classical machine learning or deep learning methods. In this study, the effective use of deep convolutional neural networks (DCNN) in fingerprint pattern recognition and classification, in which feature extraction takes place automatically, was examined experimentally and comparatively. Five DCNN models have been designed and implemented with a transfer learning approach. Four of these five models are Alexnet, Googlenet, Resnet-18, and Squeezenet pre-trained DCNN models. The fifth model is the DCNN model designed from the ground up. It was concluded that the designed DCNN models can be used effectively in fingerprint recognition and classification, and that fast results can be obtained and generalized with advanced DCNN models.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
K. Maystrenko ◽  
A. Budilov ◽  
D. Afanasev

Goal. Identify trends and prospects for the development of radar in terms of the use of convolutional neural networks for target detection. Materials and methods. Analysis of relevant printed materials related to the subject areas of radar and convolutional neural networks. Results. The transition to convolutional neural networks in the field of radar is considered. A review of papers on the use of convolutional neural networks in pattern recognition problems, in particular, in the radar problem, is carried out. Hardware costs for the implementation of convolutional neural networks are analyzed. Conclusion. The conclusion is made about the need to create a methodology for selecting a network topology depending on the parameters of the radar task.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


Sign in / Sign up

Export Citation Format

Share Document