scholarly journals Primitive Recursive Ordered Fields and Some Applications

Author(s):  
Victor Selivanov ◽  
Svetlana Selivanova
1988 ◽  
Vol 53 (3) ◽  
pp. 912-920 ◽  
Author(s):  
Philip Scowcroft

To eliminate quantifiers in the first-order theory of the p-adic field Qp, Ax and Kochen use a language containing a symbol for a cross-section map n → pn from the value group Z into Qp [1, pp. 48–49]. The primitive-recursive quantifier eliminations given by Cohen [2] and Weispfenning [10] also apply to a language mentioning the cross-section, but none of these authors seems entirely happy with his results. As Cohen says, “all the operations… introduced for our simple functions seem natural, with the possible exception of the map n → pn” [2, p. 146]. So all three authors show that various consequences of quantifier elimination—completeness, decidability, model-completeness—also hold for a theory of Qp not employing the cross-section [1, p. 453; 2, p. 146; 10, §4]. Macintyre directs a more specific complaint against the cross-section [5, p. 605]. Elementary formulae which use it can define infinite discrete subsets of Qp; yet infinite discrete subsets of R are not definable in the language of ordered fields, and so certain analogies between Qp and R suggested by previous model-theoretic work seem to break down.To avoid this problem, Macintyre gives up the cross-section and eliminates quantifiers in a theory of Qp written just in the usual language of fields supplemented by a predicate V for Qp's valuation ring and by predicates Pn for the sets of nth powers in Qp (for all n ≥ 2).


Author(s):  
Michael Blondin ◽  
Javier Esparza ◽  
Stefan Jaax ◽  
Philipp J. Meyer

AbstractPopulation protocols are a well established model of computation by anonymous, identical finite-state agents. A protocol is well-specified if from every initial configuration, all fair executions of the protocol reach a common consensus. The central verification question for population protocols is the well-specification problem: deciding if a given protocol is well-specified. Esparza et al. have recently shown that this problem is decidable, but with very high complexity: it is at least as hard as the Petri net reachability problem, which is -hard, and for which only algorithms of non-primitive recursive complexity are currently known. In this paper we introduce the class $${ WS}^3$$ WS 3 of well-specified strongly-silent protocols and we prove that it is suitable for automatic verification. More precisely, we show that $${ WS}^3$$ WS 3 has the same computational power as general well-specified protocols, and captures standard protocols from the literature. Moreover, we show that the membership and correctness problems for $${ WS}^3$$ WS 3 reduce to solving boolean combinations of linear constraints over $${\mathbb {N}}$$ N . This allowed us to develop the first software able to automatically prove correctness for all of the infinitely many possible inputs.


1988 ◽  
Vol 53 (4) ◽  
pp. 1177-1187
Author(s):  
W. A. MacCaull

Using formally intuitionistic logic coupled with infinitary logic and the completeness theorem for coherent logic, we establish the validity, in Grothendieck toposes, of a number of well-known, classically valid theorems about fields and ordered fields. Classically, these theorems have proofs by contradiction and most involve higher order notions. Here, the theorems are each given a first-order formulation, and this form of the theorem is then deduced using coherent or formally intuitionistic logic. This immediately implies their validity in arbitrary Grothendieck toposes. The main idea throughout is to use coherent theories and, whenever possible, find coherent formulations of formulas which then allow us to call upon the completeness theorem of coherent logic. In one place, the positive model-completeness of the relevant theory is used to find the necessary coherent formulas.The theorems here deal with polynomials or rational functions (in s indeterminates) over fields. A polynomial over a field can, of course, be represented by a finite string of field elements, and a rational function can be represented by a pair of strings of field elements. We chose the approach whereby results on polynomial rings are reduced to results about the base field, because the theory of polynomial rings in s indeterminates over fields, although coherent, is less desirable from a model-theoretic point of view. Ultimately we are interested in the models.This research was originally motivated by the works of Saracino and Weispfenning [SW], van den Dries [Dr], and Bunge [Bu], each of whom generalized some theorems from algebraic geometry or ordered fields to (commutative, von Neumann) regular rings (with unity).


1971 ◽  
Vol 36 (4) ◽  
pp. 653-665 ◽  
Author(s):  
M. D. Gladstone

This paper resolves 3 problems left open by R. M. Robinson in [3].We recall that the set of primitive recursive functions is the closure under (i) substitution (or “composition”), and (ii) recursion, of the set P consisting of the zero, successor and projection functions (see any textbook, for instance p. 120 of [2]).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lothar Sebastian Krapp ◽  
Salma Kuhlmann ◽  
Gabriel Lehéricy
Keyword(s):  

Abstract In this paper, we undertake a systematic model- and valuation-theoretic study of the class of ordered fields which are dense in their real closure. We apply this study to determine definable henselian valuations on ordered fields, in the language of ordered rings. In light of our results, we re-examine the Shelah–Hasson Conjecture (specialized to ordered fields) and provide an example limiting its valuation-theoretic conclusions.


1967 ◽  
Vol 8 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Stephen H. McCleary
Keyword(s):  

1986 ◽  
Vol 30 (1) ◽  
pp. 66-78 ◽  
Author(s):  
Ron Brown ◽  
Thomas C. Craven ◽  
M.J. Pelling

1987 ◽  
Vol 17 (1) ◽  
pp. 157-167 ◽  
Author(s):  
Daiji Kijima ◽  
Mieo Nishi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document