scholarly journals Silhouetting the Cost-Time Front: Multi-objective Resource Optimization in Business Processes

Author(s):  
Orlenys López-Pintado ◽  
Marlon Dumas ◽  
Maksym Yerokhin ◽  
Fabrizio Maria Maggi

AbstractThe allocation of resources in a business process determines the trade-off between cycle time and resource cost. A higher resource utilization leads to lower cost and higher cycle time, while a lower resource utilization leads to higher cost and lower waiting time. In this setting, this paper presents a multi-objective optimization approach to compute a set of Pareto-optimal resource allocations for a given process concerning cost and cycle time. The approach heuristically searches through the space of possible resource allocations using a simulation model to evaluate each allocation. Given the high number of possible allocations, it is imperative to prune the search space. Accordingly, the approach incorporates a method that selectively perturbs a resource utilization to derive new candidates that are likely to Pareto-dominate the already explored ones. The perturbation method relies on two indicators: resource utilization and resource impact, the latter being the contribution of a resource to the cost or cycle time of the process. Additionally, the approach incorporates a ranking method to accelerate convergence by guiding the search towards the resource allocations closer to the current Pareto front. The perturbation and ranking methods are embedded into two search meta-heuristics, namely hill-climbing and tabu-search. Experiments show that the proposed approach explores fewer resource allocations to compute Pareto fronts comparable to those produced by a well-known genetic algorithm for multi-objective optimization, namely NSGA-II.

2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


Author(s):  
M Vasile ◽  
F Zuiani

This article presents an algorithm for multi-objective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighbourhood of each agent. These heuristics are complemented with a combination of a local and global archive. The novel agent-based algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. Its performance is compared against a number of state-of-the-art multi-objective optimization algorithms that use the Pareto dominance as selection criterion: non-dominated sorting genetic algorithm (NSGA-II), Pareto archived evolution strategy (PAES), multiple objective particle swarm optimization (MOPSO), and multiple trajectory search (MTS). The results demonstrate that the agent-based search can identify parts of the Pareto set that the other algorithms were not able to capture. Furthermore, convergence is statistically better although the variance of the results is in some cases higher.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1159 ◽  
Author(s):  
Lianzhou Wu ◽  
Tao Bai ◽  
Qiang Huang ◽  
Jian Wei ◽  
Xia Liu

It is important to investigate the laws of reservoir multi-objective optimization operations, because it can obtain the best benefits from inter-basin water transfer projects to mitigate water shortage in intake areas. Given the multifaceted demands of the Hanjiang to Wei River Water Diversion Project, China (referred hereafter as “the Project”), an easy-to-operate multi-objective optimal model based on simulation is built and applied to search the multi-objective optimization operation rules between power generation and energy consumption. The Project includes two reservoirs connected by a water transfer tunnel. One is Huangjinxia, located in the mainstream of Hanjiang with abundant inflow but no regulation ability, and the other is Sanhekou, located in the tributary of Hanjiang with multi-year regulation ability but less water. The layout of the Project increases the difficulty of reservoir joint optimization operations. Therefore, an improved Non-dominated Sorting Genetic Algorithm-II (I-NSGA-II) with a feasible search space is proposed to solve the model based on long-term series data. The results show that: (1) The validated simulation model is helpful to obtain Pareto front curves to reveal the rules between power generation and energy consumption. (2) Choosing a reasonable search step size to build a feasible search space based on simulation results for the I-NSGA-II can help find more optimized solutions. Considering the influence of the initial populations of the algorithm and limited computing ability of computers, the qualified rate of Pareto points solved by I-NSGA-II are superior to NSGA-II. (3) According to the characteristics of the Project, water transfer ratio threshold value of two reservoirs are quantified for maximize economic benefits. Moreover, the flood season is a critical operation period for the Project, in which both reservoirs should supply more water to intake areas to ensure the energy balanced of the entire system. The findings provide an easy-to-operate multi-objective operation model with the I-NSGA-II that can easily be applied in optimal management of inter-basin water transfer projects by relevant authorities.


Author(s):  
Mehran Shaygan ◽  
Abbas Alimohammadi ◽  
Ali Mansourian ◽  
Zohreh Shams Govara ◽  
S. Mostapha Kalami

2021 ◽  
Vol 8 (1-2) ◽  
pp. 58-65
Author(s):  
Filip Dodigović ◽  
Krešo Ivandić ◽  
Jasmin Jug ◽  
Krešimir Agnezović

The paper investigates the possibility of applying the genetic algorithm NSGA-II to optimize a reinforced concrete retaining wall embedded in saturated silty sand. Multi-objective constrained optimization was performed to minimize the cost, while maximizing the overdesign factors (ODF) against sliding, overturning, and soil bearing resistance. For a given change in ground elevation of 5.0 m, the width of the foundation and the embedment depth were optimized. Comparing the algorithm's performance in the cases of two-objective and three objective optimizations showed that the number of objectives significantly affects its convergence rate. It was also found that the verification of the wall against the sliding yields a lower ODF value than verifications against overturning and soil bearing capacity. Because of that, it is possible to exclude them from the definition of optimization problem. The application of the NSGA-II algorithm has been demonstrated to be an effective tool for determining the set of optimal retaining wall designs.


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


2019 ◽  
Vol 26 (2) ◽  
pp. 405-429 ◽  
Author(s):  
Feng Shen ◽  
Run Wang ◽  
Yu Shen

Credit scoring is an important process for peer-to-peer (P2P) lending companies as it determines whether loan applicants are likely to default. The aim of most credit scoring models is to minimize the classification error rate, which implies that all classification errors bear the same cost; however, in reality, there is a significant cost-sensitive problem in credit scoring methods. Therefore, in this paper, a new cost-sensitive logistic regression credit scoring model based on a multi-objective optimization approach is proposed that has two objectives in the cost-sensitive logistic regression process. The cost-sensitive logistic regression parameters are solved using a multiple objective particle swarm optimization (MOPSO) algorithm. In the empirical analysis, the proposed model was applied to the credit scoring of a Chinese famous P2P company, from which it was found that compared with other common credit scoring models, the proposed model was able to effectively reduce type II error rates and total classification error costs, and improve the AUC, the F1 values (reconciliation average of Recall and Precision), and the G-means. The proposed model was compared with other multi-objective optimization algorithms to further demonstrate that MOPSO is the best approach for cost-sensitive logistic regression credit scoring models.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 520 ◽  
Author(s):  
Biao Zhang ◽  
Xin Chen ◽  
Kaixuan Pan ◽  
Jianing Wang

By controlling various friction stir spot-welded (FSSW) factors, two base sheets AA 5052-H32 and 6061-T6 were selected to bond similar and dissimilar metal joints while considering dissimilar configuration orders. The effects of weld parameters on the sheer strength and peel strength were separately developed into empirical models utilizing the integrated central composite matrix design and response surface methodology (RSM). Meanwhile, the finite element (FE) analysis of the multi-axis load-bearing characteristics for automotive solder joints during service was carried out. As a result, the weights of the shear and axial stress, accounting for 90.5% and 9.5% respectively, were employed to restrict the relationship between multiple target properties, and the resulting security strength was applied to determine the feasible domain in subsequent parametric optimization. In order to enable the optimal multi-axis capacities in accordance with the load mode, the genetic algorithm NSGA-II was chosen to compute the Pareto front and further determine the best compromise solutions. The obtained optimums corresponding to each joining condition were validated by confirmation runs, indicating that this coupled multi-objective optimization approach based on working conditions was beneficial to the targeted improvement of post-weld mechanical properties.


2019 ◽  
Vol 45 (5) ◽  
pp. 1-15 ◽  
Author(s):  
Alex Lubida ◽  
Mozafar Veysipanah ◽  
Petter Pilesjo ◽  
Ali Mansourian

Land-use planning, which requires finding a balance among different conflicting social, economic and environment factors, is a complex task needed everywhere, including Africa. One example is the city of Zanzibar in Tanzania, which is under special consideration for land-use revision. From one side, the city has high potentials for tourist industry and at the other side there are major challenges with the city structure and poor accessibilities. In order to prepare a proper land-use plan for the city, a variety of influencing conflicting factors needs to be considered and satisfied. This can be regarded as a common problem in many African cities, which are under development. This paper aims to address the problem by proposing and demonstrating the use of Geographical Information System (GIS) and multi-objective optimization for land-use planning, in Zanzibar as a case study. The measures which have been taken by Zanzibar government to address the development challenges through the Zanzibar Strategy for Growth and Reduction of Poverty (ZSGRP) were identified by studying related documents and interviewing experts. Based on these, two objective functions were developed for land-use planning. Optimum base land-use plans were developed and mapped by optimizing the objective functions using the NSGA-II algorithm. The results show that the proposed approach and outputs can considerably facilitate land-use planning in Zanzibar. Similar approaches are highly recommended for other cities in Africa which are under development.


Sign in / Sign up

Export Citation Format

Share Document