wei river
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 56)

H-INDEX

22
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Zhuoran Luo ◽  
Jiahong Liu ◽  
Weiwei Shao ◽  
Yongxiang Zhang ◽  
Ruitao Jia

The construction of water resources optimal allocation model is the premise and foundation of solving and evaluating the optimal allocation model of water resources. The allocation of water resources includes not only the simple allocation of water resources, but also the protection of water resources and the analysis of the relationship between water supply and demand. Aiming at the problem of water shortage in the receiving area of water diversion from Hanjiang River to Weihe River, the large-scale system decomposition and coordination algorithm is used to optimally allocate the water use departments of each district of the water diversion area from Han to Wei River in Shaanxi Province, and establish the water diversion project from Han to Wei River. Optimal allocation model of water resources in the water receiving area. The results show that: in the 2030 planning level, the water supply of key cities, Xixian new district, medium/small cities, and industrial parks were 153.57, 368.16, 632.04, and 208.68 million m3, respectively, and the corresponding water shortage rate was 2.8%, 5.6%, 8.4%, 11.2%. The water supply sequence has a lower water shortage rate than the previous one, and the water shortage rate of the domestic water sector in key cities is only 1.2%. From the water shortage situation of various water departments in 2030, it can basically meet the water shortage of water receiving objects and effectively improve the water shortage in water receiving areas.


Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Weidong Huang

This study aimed to explore the long-term vegetation cover change and its driving factors in the typical watershed of the Yellow River Basin. This research was based on the Google Earth Engine (GEE), a remote sensing cloud platform, and used the Landsat surface reflectance datasets and the Pearson correlation method to analyze the vegetation conditions in the areas above Xianyang on the Wei River and above Zhangjiashan on the Jing River. Random forest and decision tree models were used to analyze the effects of various climatic factors (precipitation, temperature, soil moisture, evapotranspiration, and drought index) on NDVI (normalized difference vegetation index). Then, based on the residual analysis method, the effects of human activities on NDVI were explored. The results showed that: (1) From 1987 to 2018, the NDVI of the two watersheds showed an increasing trend; in particular, after 2008, the average increase rate of NDVI in the growing season (April to September) increased from 0.0032/a and 0.003/a in the base period (1987–2008) to 0.0172/a and 0.01/a in the measurement period (2008–2018), for the Wei and Jing basins, respectively. In addition, the NDVI significantly increased from 21.78% and 31.32% in the baseline period (1987–2008) to 83.76% and 92.40% in the measurement period (2008–2018), respectively. (2) The random forest and classification and regression tree model (CART) can assess the contribution and sensitivity of various climate factors to NDVI. Precipitation, soil moisture, and temperature were found to be the three main factors that affect the NDVI of the study area, and their contributions were 37.05%, 26.42%, and 15.72%, respectively. The changes in precipitation and soil moisture in the entire Jing River Basin and the upper and middle reaches of the Wei River above Xianyang caused significant changes in NDVI. Furthermore, changes in precipitation and temperature led to significant changes in NDVI in the lower reaches of the Wei River. (3) The impact of human activities in the Wei and Jing basins on NDVI has gradually changed from negative to positive, which is mainly due to the implementation of soil and water conservation measures. The proportions of areas with positive effects of human activities were 80.88% and 81.95%, of which the proportions of areas with significant positive effects were 11.63% and 7.76%, respectively. These are mainly distributed in the upper reaches of the Wei River and the western and eastern regions of the Jing River. These areas are the key areas where soil and water conservation measures have been implemented in recent years, and the corresponding land use has transformed from cultivated land to forest and grassland. The negative effects accounted for 1.66% and 0.10% of the area, respectively, and were mainly caused by urban expansion and coal mining.


2021 ◽  
Vol 232 (11) ◽  
Author(s):  
Yongfeng Shi ◽  
Yuehan Lu ◽  
Yucheng Zhang ◽  
Xiaotong Su ◽  
Qihang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document