On the Linguistic and Pedagogical Quality of Automatic Question Generation via Neural Machine Translation

2021 ◽  
pp. 289-294
Author(s):  
Tim Steuer ◽  
Leonard Bongard ◽  
Jan Uhlig ◽  
Gianluca Zimmer
Author(s):  
Yutong Wang ◽  
Jiyuan Zheng ◽  
Qijiong Liu ◽  
Zhou Zhao ◽  
Jun Xiao ◽  
...  

Automatic question generation according to an answer within the given passage is useful for many applications, such as question answering system, dialogue system, etc. Current neural-based methods mostly take two steps which extract several important sentences based on the candidate answer through manual rules or supervised neural networks and then use an encoder-decoder framework to generate questions about these sentences. These approaches still acquire two steps and neglect the semantic relations between the answer and the context of the whole passage which is sometimes necessary for answering the question. To address this problem, we propose the Weakly Supervision Enhanced Generative Network (WeGen) which automatically discovers relevant features of the passage given the answer span in a weakly supervised manner to improve the quality of generated questions. More specifically, we devise a discriminator, Relation Guider, to capture the relations between the passage and the associated answer and then the Multi-Interaction mechanism is deployed to transfer the knowledge dynamically for our question generation system. Experiments show the effectiveness of our method in both automatic evaluations and human evaluations.


Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


Author(s):  
Yang Zhao ◽  
Jiajun Zhang ◽  
Yu Zhou ◽  
Chengqing Zong

Knowledge graphs (KGs) store much structured information on various entities, many of which are not covered by the parallel sentence pairs of neural machine translation (NMT). To improve the translation quality of these entities, in this paper we propose a novel KGs enhanced NMT method. Specifically, we first induce the new translation results of these entities by transforming the source and target KGs into a unified semantic space. We then generate adequate pseudo parallel sentence pairs that contain these induced entity pairs. Finally, NMT model is jointly trained by the original and pseudo sentence pairs. The extensive experiments on Chinese-to-English and Englishto-Japanese translation tasks demonstrate that our method significantly outperforms the strong baseline models in translation quality, especially in handling the induced entities.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050002
Author(s):  
Taichi Aida ◽  
Kazuhide Yamamoto

Current methods of neural machine translation may generate sentences with different levels of quality. Methods for automatically evaluating translation output from machine translation can be broadly classified into two types: a method that uses human post-edited translations for training an evaluation model, and a method that uses a reference translation that is the correct answer during evaluation. On the one hand, it is difficult to prepare post-edited translations because it is necessary to tag each word in comparison with the original translated sentences. On the other hand, users who actually employ the machine translation system do not have a correct reference translation. Therefore, we propose a method that trains the evaluation model without using human post-edited sentences and in the test set, estimates the quality of output sentences without using reference translations. We define some indices and predict the quality of translations with a regression model. For the quality of the translated sentences, we employ the BLEU score calculated from the number of word [Formula: see text]-gram matches between the translated sentence and the reference translation. After that, we compute the correlation between quality scores predicted by our method and BLEU actually computed from references. According to the experimental results, the correlation with BLEU is the highest when XGBoost uses all the indices. Moreover, looking at each index, we find that the sentence log-likelihood and the model uncertainty, which are based on the joint probability of generating the translated sentence, are important in BLEU estimation.


2020 ◽  
Vol 8 ◽  
pp. 539-555
Author(s):  
Marina Fomicheva ◽  
Shuo Sun ◽  
Lisa Yankovskaya ◽  
Frédéric Blain ◽  
Francisco Guzmán ◽  
...  

Quality Estimation (QE) is an important component in making Machine Translation (MT) useful in real-world applications, as it is aimed to inform the user on the quality of the MT output at test time. Existing approaches require large amounts of expert annotated data, computation, and time for training. As an alternative, we devise an unsupervised approach to QE where no training or access to additional resources besides the MT system itself is required. Different from most of the current work that treats the MT system as a black box, we explore useful information that can be extracted from the MT system as a by-product of translation. By utilizing methods for uncertainty quantification, we achieve very good correlation with human judgments of quality, rivaling state-of-the-art supervised QE models. To evaluate our approach we collect the first dataset that enables work on both black-box and glass-box approaches to QE.


Author(s):  
Candy Lalrempuii ◽  
Badal Soni ◽  
Partha Pakray

Machine Translation is an effort to bridge language barriers and misinterpretations, making communication more convenient through the automatic translation of languages. The quality of translations produced by corpus-based approaches predominantly depends on the availability of a large parallel corpus. Although machine translation of many Indian languages has progressively gained attention, there is very limited research on machine translation and the challenges of using various machine translation techniques for a low-resource language such as Mizo. In this article, we have implemented and compared statistical-based approaches with modern neural-based approaches for the English–Mizo language pair. We have experimented with different tokenization methods, architectures, and configurations. The performance of translations predicted by the trained models has been evaluated using automatic and human evaluation measures. Furthermore, we have analyzed the prediction errors of the models and the quality of predictions based on variations in sentence length and compared the model performance with the existing baselines.


2019 ◽  
Vol 252 ◽  
pp. 03006
Author(s):  
Ualsher Tukeyev ◽  
Aidana Karibayeva ◽  
Balzhan Abduali

The lack of big parallel data is present for the Kazakh language. This problem seriously impairs the quality of machine translation from and into Kazakh. This article considers the neural machine translation of the Kazakh language on the basis of synthetic corpora. The Kazakh language belongs to the Turkic languages, which are characterised by rich morphology. Neural machine translation of natural languages requires large training data. The article will show the model for the creation of synthetic corpora, namely the generation of sentences based on complete suffixes for the Kazakh language. The novelty of this approach of the synthetic corpora generation for the Kazakh language is the generation of sentences on the basis of the complete system of suffixes of the Kazakh language. By using generated synthetic corpora we are improving the translation quality in neural machine translation of Kazakh-English and Kazakh-Russian pairs.


2019 ◽  
Vol 26 (2) ◽  
pp. 137-161
Author(s):  
Eirini Chatzikoumi

AbstractThis article presents the most up-to-date, influential automated, semiautomated and human metrics used to evaluate the quality of machine translation (MT) output and provides the necessary background for MT evaluation projects. Evaluation is, as repeatedly admitted, highly relevant for the improvement of MT. This article is divided into three parts: the first one is dedicated to automated metrics; the second, to human metrics; and the last, to the challenges posed by neural machine translation (NMT) regarding its evaluation. The first part includes reference translation–based metrics; confidence or quality estimation (QE) metrics, which are used as alternatives for quality assessment; and diagnostic evaluation based on linguistic checkpoints. Human evaluation metrics are classified according to the criterion of whether human judges directly express a so-called subjective evaluation judgment, such as ‘good’ or ‘better than’, or not, as is the case in error classification. The former methods are based on directly expressed judgment (DEJ); therefore, they are called ‘DEJ-based evaluation methods’, while the latter are called ‘non-DEJ-based evaluation methods’. In the DEJ-based evaluation section, tasks such as fluency and adequacy annotation, ranking and direct assessment (DA) are presented, whereas in the non-DEJ-based evaluation section, tasks such as error classification and postediting are detailed, with definitions and guidelines, thus rendering this article a useful guide for evaluation projects. Following the detailed presentation of the previously mentioned metrics, the specificities of NMT are set forth along with suggestions for its evaluation, according to the latest studies. As human translators are the most adequate judges of the quality of a translation, emphasis is placed on the human metrics seen from a translator-judge perspective to provide useful methodology tools for interdisciplinary research groups that evaluate MT systems.


Sign in / Sign up

Export Citation Format

Share Document