scholarly journals Weak Supervision Enhanced Generative Network for Question Generation

Author(s):  
Yutong Wang ◽  
Jiyuan Zheng ◽  
Qijiong Liu ◽  
Zhou Zhao ◽  
Jun Xiao ◽  
...  

Automatic question generation according to an answer within the given passage is useful for many applications, such as question answering system, dialogue system, etc. Current neural-based methods mostly take two steps which extract several important sentences based on the candidate answer through manual rules or supervised neural networks and then use an encoder-decoder framework to generate questions about these sentences. These approaches still acquire two steps and neglect the semantic relations between the answer and the context of the whole passage which is sometimes necessary for answering the question. To address this problem, we propose the Weakly Supervision Enhanced Generative Network (WeGen) which automatically discovers relevant features of the passage given the answer span in a weakly supervised manner to improve the quality of generated questions. More specifically, we devise a discriminator, Relation Guider, to capture the relations between the passage and the associated answer and then the Multi-Interaction mechanism is deployed to transfer the knowledge dynamically for our question generation system. Experiments show the effectiveness of our method in both automatic evaluations and human evaluations.

2020 ◽  
Vol 34 (05) ◽  
pp. 9065-9072
Author(s):  
Luu Anh Tuan ◽  
Darsh Shah ◽  
Regina Barzilay

Automatic question generation can benefit many applications ranging from dialogue systems to reading comprehension. While questions are often asked with respect to long documents, there are many challenges with modeling such long documents. Many existing techniques generate questions by effectively looking at one sentence at a time, leading to questions that are easy and not reflective of the human process of question generation. Our goal is to incorporate interactions across multiple sentences to generate realistic questions for long documents. In order to link a broad document context to the target answer, we represent the relevant context via a multi-stage attention mechanism, which forms the foundation of a sequence to sequence model. We outperform state-of-the-art methods on question generation on three question-answering datasets - SQuAD, MS MARCO and NewsQA. 1


Author(s):  
A. Chandra Obula Reddy ◽  
K. Madhavi

Complex Question Answering (CQA) is commonly used for answering community questions which requires human knowledge for answering them. It is essential to find complex question answering system for avoiding the complexities behind the question answering system. In the present work, we proposed Hierarchy based Firefly Optimized k-means Clustering (HFO-KC) method for complex question answering. Initially, the given input query is preprocessed. It eliminates the way of misclassification when comparing the strings. In order to enhance the answer selection process, the obtained keywords are mapped into the candidate solution. After mapping, the obtained keywords are segmented. Each segmentation forms a new query for answer selection and various number of answers selected for each query. Okapi-25 similarity computation is utilized for the process of document retrieval. Then the answers selected are classified with K means clustering which forms the hierarchy for each answer. Finally the firefly optimization algorithm is used for selecting the best quality of answer from the hierarchy.


2012 ◽  
Vol 3 (2) ◽  
pp. 43-74 ◽  
Author(s):  
Delphine Bernhard ◽  
Louis de Viron ◽  
Véronique Moriceau ◽  
Xavier Tannier

This article describes a question generation system for French. The transformation of declarative sentences into questions relies on two different syntactic parsers and named entity recognition tools. This makes it possible to further diversify the questions generated and to possibly alleviate the problems inherent to the analysis tools. The system also generates reformulations for the questions based on variations in the question words, inducing answers with different granularities, and nominalisations of action verbs. We evaluate the questions generated for sentences extracted from two different corpora: a corpus of newspaper articles used for the CLEF Question Answering evaluation campaign and a corpus of simplified online encyclopedia articles. The evaluation shows that the system is able to generate a majority of good and medium quality questions. We also present an original evaluation of the question generation system using the question analysis module of a question answering system.


Author(s):  
Tao Shen ◽  
Xiubo Geng ◽  
Guodong Long ◽  
Jing Jiang ◽  
Chengqi Zhang ◽  
...  

Many algorithms for Knowledge-Based Question Answering (KBQA) depend on semantic parsing, which translates a question to its logical form. When only weak supervision is provided, it is usually necessary to search valid logical forms for model training. However, a complex question typically involves a huge search space, which creates two main problems: 1) the solutions limited by computation time and memory usually reduce the success rate of the search, and 2) spurious logical forms in the search results degrade the quality of training data. These two problems lead to a poorly-trained semantic parsing model. In this work, we propose an effective search method for weakly supervised KBQA based on operator prediction for questions. With search space constrained by predicted operators, sufficient search paths can be explored, more valid logical forms can be derived, and operators possibly causing spurious logical forms can be avoided. As a result, a larger proportion of questions in a weakly supervised training set are equipped with logical forms, and fewer spurious logical forms are generated. Such high-quality training data directly contributes to a better semantic parsing model. Experimental results on one of the largest KBQA datasets (i.e., CSQA) verify the effectiveness of our approach and deliver a new state-of-the-art performance.


2021 ◽  
Vol 09 (09) ◽  
pp. 161-168
Author(s):  
Xinya Zhang ◽  
Xiaodong Yan ◽  
Zhou Yao

Author(s):  
Hariom Pandya ◽  
Brijesh Bhatt

The usage and amount of information available on the internet increase over the past decade. This digitization leads to the need for automated answering system to extract fruitful information from redundant and transitional knowledge sources. Such systems are designed to cater the most prominent answer from this giant knowledge source to the user’s query using natural language understanding (NLU) and thus eminently depends on the Question-answering(QA) field. Question answering involves but not limited to the steps like mapping of user’s question to pertinent query, retrieval of relevant information, finding the best suitable answer from the retrieved information etc. The current improvement of deep learning models evince compelling performance improvement in all these tasks. In this review work, the research directions of QA field are analyzed based on the type of question, answer type, source of evidence-answer, and modeling approach. This detailing followed by open challenges of the field like automatic question generation, similarity detection and, low resource availability for a language. In the end, a survey of available datasets and evaluation measures is presented.


Author(s):  
P Pabitha ◽  
M. Mohana ◽  
S. Suganthi ◽  
B. Sivanandhini

2021 ◽  
Vol 19 (2) ◽  
pp. 5-16
Author(s):  
E. P. Bruches ◽  
T. V. Batura

We propose a method for scientific terms extraction from the texts in Russian based on weakly supervised learning. This approach doesn't require a large amount of hand-labeled data. To implement this method we collected a list of terms in a semi-automatic way and then annotated texts of scientific articles with these terms. These texts we used to train a model. Then we used predictions of this model on another part of the text collection to extend the train set. The second model was trained on both text collections: annotated with a dictionary and by a second model. Obtained results showed that giving additional data, annotated even in an automatic way, improves the quality of scientific terms extraction.


Sign in / Sign up

Export Citation Format

Share Document