scholarly journals Few-Sample Named Entity Recognition for Security Vulnerability Reports by Fine-Tuning Pre-trained Language Models

2021 ◽  
pp. 55-78
Author(s):  
Guanqun Yang ◽  
Shay Dineen ◽  
Zhipeng Lin ◽  
Xueqing Liu
2021 ◽  
Vol 11 (13) ◽  
pp. 6007
Author(s):  
Muzamil Hussain Syed ◽  
Sun-Tae Chung

Entity-based information extraction is one of the main applications of Natural Language Processing (NLP). Recently, deep transfer-learning utilizing contextualized word embedding from pre-trained language models has shown remarkable results for many NLP tasks, including Named-entity recognition (NER). BERT (Bidirectional Encoder Representations from Transformers) is gaining prominent attention among various contextualized word embedding models as a state-of-the-art pre-trained language model. It is quite expensive to train a BERT model from scratch for a new application domain since it needs a huge dataset and enormous computing time. In this paper, we focus on menu entity extraction from online user reviews for the restaurant and propose a simple but effective approach for NER task on a new domain where a large dataset is rarely available or difficult to prepare, such as food menu domain, based on domain adaptation technique for word embedding and fine-tuning the popular NER task network model ‘Bi-LSTM+CRF’ with extended feature vectors. The proposed NER approach (named as ‘MenuNER’) consists of two step-processes: (1) Domain adaptation for target domain; further pre-training of the off-the-shelf BERT language model (BERT-base) in semi-supervised fashion on a domain-specific dataset, and (2) Supervised fine-tuning the popular Bi-LSTM+CRF network for downstream task with extended feature vectors obtained by concatenating word embedding from the domain-adapted pre-trained BERT model from the first step, character embedding and POS tag feature information. Experimental results on handcrafted food menu corpus from customers’ review dataset show that our proposed approach for domain-specific NER task, that is: food menu named-entity recognition, performs significantly better than the one based on the baseline off-the-shelf BERT-base model. The proposed approach achieves 92.5% F1 score on the YELP dataset for the MenuNER task.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 786
Author(s):  
Siqi Chen ◽  
Yijie Pei ◽  
Zunwang Ke ◽  
Wushour Silamu

Named entity recognition (NER) is an important task in the processing of natural language, which needs to determine entity boundaries and classify them into pre-defined categories. For low-resource languages, most state-of-the-art systems require tens of thousands of annotated sentences to obtain high performance. However, there is minimal annotated data available about Uyghur and Hungarian (UH languages) NER tasks. There are also specificities in each task—differences in words and word order across languages make it a challenging problem. In this paper, we present an effective solution to providing a meaningful and easy-to-use feature extractor for named entity recognition tasks: fine-tuning the pre-trained language model. Therefore, we propose a fine-tuning method for a low-resource language model, which constructs a fine-tuning dataset through data augmentation; then the dataset of a high-resource language is added; and finally the cross-language pre-trained model is fine-tuned on this dataset. In addition, we propose an attention-based fine-tuning strategy that uses symmetry to better select relevant semantic and syntactic information from pre-trained language models and apply these symmetry features to name entity recognition tasks. We evaluated our approach on Uyghur and Hungarian datasets, which showed wonderful performance compared to some strong baselines. We close with an overview of the available resources for named entity recognition and some of the open research questions.


2021 ◽  
pp. 1-12
Author(s):  
Yingwen Fu ◽  
Nankai Lin ◽  
Xiaotian Lin ◽  
Shengyi Jiang

Named entity recognition (NER) is fundamental to natural language processing (NLP). Most state-of-the-art researches on NER are based on pre-trained language models (PLMs) or classic neural models. However, these researches are mainly oriented to high-resource languages such as English. While for Indonesian, related resources (both in dataset and technology) are not yet well-developed. Besides, affix is an important word composition for Indonesian language, indicating the essentiality of character and token features for token-wise Indonesian NLP tasks. However, features extracted by currently top-performance models are insufficient. Aiming at Indonesian NER task, in this paper, we build an Indonesian NER dataset (IDNER) comprising over 50 thousand sentences (over 670 thousand tokens) to alleviate the shortage of labeled resources in Indonesian. Furthermore, we construct a hierarchical structured-attention-based model (HSA) for Indonesian NER to extract sequence features from different perspectives. Specifically, we use an enhanced convolutional structure as well as an enhanced attention structure to extract deeper features from characters and tokens. Experimental results show that HSA establishes competitive performance on IDNER and three benchmark datasets.


2021 ◽  
pp. 1-13
Author(s):  
Xia Li ◽  
Qinghua Wen ◽  
Zengtao Jiao ◽  
Jiangtao Zhang

Abstract The China Conference on Knowledge Graph and Semantic Computing (CCKS) 2020 Evaluation Task 3 presented clinical named entity recognition and event extraction for the Chinese electronic medical records. Two annotated data sets and some other additional resources for these two subtasks were provided for participators. This evaluation competition attracted 354 teams and 46 of them successfully submitted the valid results. The pre-trained language models are widely applied in this evaluation task. Data argumentation and external resources are also helpful.


2019 ◽  
Vol 9 (18) ◽  
pp. 3658 ◽  
Author(s):  
Jianliang Yang ◽  
Yuenan Liu ◽  
Minghui Qian ◽  
Chenghua Guan ◽  
Xiangfei Yuan

Clinical named entity recognition is an essential task for humans to analyze large-scale electronic medical records efficiently. Traditional rule-based solutions need considerable human effort to build rules and dictionaries; machine learning-based solutions need laborious feature engineering. For the moment, deep learning solutions like Long Short-term Memory with Conditional Random Field (LSTM–CRF) achieved considerable performance in many datasets. In this paper, we developed a multitask attention-based bidirectional LSTM–CRF (Att-biLSTM–CRF) model with pretrained Embeddings from Language Models (ELMo) in order to achieve better performance. In the multitask system, an additional task named entity discovery was designed to enhance the model’s perception of unknown entities. Experiments were conducted on the 2010 Informatics for Integrating Biology & the Bedside/Veterans Affairs (I2B2/VA) dataset. Experimental results show that our model outperforms the state-of-the-art solution both on the single model and ensemble model. Our work proposes an approach to improve the recall in the clinical named entity recognition task based on the multitask mechanism.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Lejun Gong ◽  
Zhifei Zhang ◽  
Shiqi Chen

Background. Clinical named entity recognition is the basic task of mining electronic medical records text, which are with some challenges containing the language features of Chinese electronic medical records text with many compound entities, serious missing sentence components, and unclear entity boundary. Moreover, the corpus of Chinese electronic medical records is difficult to obtain. Methods. Aiming at these characteristics of Chinese electronic medical records, this study proposed a Chinese clinical entity recognition model based on deep learning pretraining. The model used word embedding from domain corpus and fine-tuning of entity recognition model pretrained by relevant corpus. Then BiLSTM and Transformer are, respectively, used as feature extractors to identify four types of clinical entities including diseases, symptoms, drugs, and operations from the text of Chinese electronic medical records. Results. 75.06% Macro-P, 76.40% Macro-R, and 75.72% Macro-F1 aiming at test dataset could be achieved. These experiments show that the Chinese clinical entity recognition model based on deep learning pretraining can effectively improve the recognition effect. Conclusions. These experiments show that the proposed Chinese clinical entity recognition model based on deep learning pretraining can effectively improve the recognition performance.


2021 ◽  
Author(s):  
Nona Naderi ◽  
Julien Knafou ◽  
Jenny Copara ◽  
Patrick Ruch ◽  
Douglas Teodoro

AbstractThe health and life science domains are well known for their wealth of entities. These entities are presented as free text in large corpora, such as biomedical scientific and electronic health records. To enable the secondary use of these corpora and unlock their value, named entity recognition (NER) methods are proposed. Inspired by the success of deep masked language models, we present an ensemble approach for NER using these models. Results show statistically significant improvement of the ensemble models over baselines based on individual models in multiple domains - chemical, clinical and wet lab - and languages - English and French. The ensemble model achieves an overall performance of 79.2% macro F1-score, a 4.6 percentage point increase upon the baseline in multiple domains and languages. These results suggests that ensembles are a more effective strategy for tackling NER. We further perform a detailed analysis of their performance based on a set of entity properties.


Sign in / Sign up

Export Citation Format

Share Document