Aerial-Aquatic Locomotion in Nature

Author(s):  
Raphael Zufferey ◽  
Robert Siddall ◽  
Sophie F. Armanini ◽  
Mirko Kovac
Keyword(s):  
2019 ◽  
Author(s):  
Kiersten K. Formoso ◽  
◽  
Michael B. Habib ◽  
David J. Bottjer

2017 ◽  
Vol 2 (8) ◽  
Author(s):  
M. Saadat ◽  
F. E. Fish ◽  
A. G. Domel ◽  
V. Di Santo ◽  
G. V. Lauder ◽  
...  
Keyword(s):  

2021 ◽  
Vol 918 ◽  
Author(s):  
D. Paniccia ◽  
G. Graziani ◽  
C. Lugni ◽  
R. Piva

Abstract


Author(s):  
Amin Rahmat ◽  
Hossein Nasiri ◽  
Marjan Goodarzi ◽  
Ehsan Heidaryan

Purpose This paper aims to introduce a numerical investigation of aquatic locomotion using the smoothed particle hydrodynamics (SPH) method. Design/methodology/approach To model this problem, a simple improved SPH algorithm is presented that can handle complex geometries using updatable dummy particles. The computational code is validated by solving the flow over a two-dimensional cylinder and comparing its drag coefficient for two different Reynolds numbers with those in the literature. Findings Additionally, the drag coefficient and vortices created behind the aquatic swimmer are quantitatively and qualitatively compared with available credential data. Afterward, the flow over an aquatic swimmer is simulated for a wide range of Reynolds and Strouhal numbers, as well as for the amplitude envelope. Moreover, comprehensive discussions on drag coefficient and vorticity patterns behind the aquatic are made. Originality/value It is found that by increasing both Reynolds and Strouhal numbers separately, the anguilliform motion approaches the self-propulsion condition; however, the vortices show different pattern with these increments.


2018 ◽  
Vol 59 (1) ◽  
pp. 48-60 ◽  
Author(s):  
P S Segre ◽  
D E Cade ◽  
J Calambokidis ◽  
F E Fish ◽  
A S Friedlaender ◽  
...  

Abstract Blue whales are often characterized as highly stable, open-ocean swimmers who sacrifice maneuverability for long-distance cruising performance. However, recent studies have revealed that blue whales actually exhibit surprisingly complex underwater behaviors, yet little is known about the performance and control of these maneuvers. Here, we use multi-sensor biologgers equipped with cameras to quantify the locomotor dynamics and the movement of the control surfaces used by foraging blue whales. Our results revealed that simple maneuvers (rolls, turns, and pitch changes) are performed using distinct combinations of control and power provided by the flippers, the flukes, and bending of the body, while complex trajectories are structured by combining sequences of simple maneuvers. Furthermore, blue whales improve their turning performance by using complex banked turns to take advantage of their substantial dorso-ventral flexibility. These results illustrate the important role body flexibility plays in enhancing control and performance of maneuvers, even in the largest of animals. The use of the body to supplement the performance of the hydrodynamically active surfaces may represent a new mechanism in the control of aquatic locomotion.


Physiology ◽  
2002 ◽  
Vol 17 (6) ◽  
pp. 235-240 ◽  
Author(s):  
George V. Lauder ◽  
Eliot G. Drucker

Understanding how fishes generate external fluid force to swim steadily and maneuver has proven to be difficult because water does not provide a stable platform for force measurement. But new methods in experimental fluid mechanics provide insights into the physiological mechanisms of aquatic force generation and limits to locomotor performance.


2012 ◽  
Vol 113 (3) ◽  
pp. 651-659 ◽  
Author(s):  
Pedro Figueiredo ◽  
Huub M. Toussaint ◽  
João Paulo Vilas-Boas ◽  
Ricardo J. Fernandes

1999 ◽  
Vol 24 (2) ◽  
pp. 237-252 ◽  
Author(s):  
M. Sfakiotakis ◽  
D.M. Lane ◽  
J.B.C. Davies

1992 ◽  
Vol 162 (1) ◽  
pp. 107-130 ◽  
Author(s):  
LARRY M. FROLICH ◽  
ANDREW A. BIEWENER

Aquatic neotenic and terrestrial metamorphosed salamanders {Ambystoma tigrinum) were videotaped simultaneously with electromyographic (EMG) recording from five epaxial myotomes along the animal's trunk during swimming in a flow tank and trotting on a treadmill to investigate axial function during aquatic and terrestrial locomotion. Neotenic and metamorphosed individuals swim using very similar axial wave patterns, despite significant differences in axial morphology. During swimming, both forms exhibit traveling waves of axial flexion and muscle activity, with an increasing EMG-mechanical delay as these waves travel down the trunk. In contrast to swimming, during trotting metamorphosed individuals exhibit a standing wave of axial flexion produced by synchronous activation of ipsilateral epaxial myotomes along the trunk. Thus, metamorphosed individuals employ two distinct axial motor programs -- one used during swimming and one used during trotting. The transition from a traveling axial wave during swimming to a standing axial wave during trotting in A. tigrinum may be an appropriate analogy for similar transitions in axial locomotor function during theoriginal evolution of terrestriality in early tetrapods.


Sign in / Sign up

Export Citation Format

Share Document