Ensemble Machine Learning Model for Mortality Prediction Inside Intensive Care Unit

Author(s):  
Nora El-Rashidy ◽  
Shaker El-Sappagh ◽  
Samir Abdelrazik ◽  
Hazem El-Bakry
2021 ◽  
Author(s):  
Jaeyoung Yang ◽  
Hong-Gook Lim ◽  
Wonhyeong Park ◽  
Dongseok Kim ◽  
Jin Sun Yoon ◽  
...  

Abstract BackgroundPrediction of mortality in intensive care units is very important. Thus, various mortality prediction models have been developed for this purpose. However, they do not accurately reflect the changing condition of the patient in real time. The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using four easy-to-collect vital signs.MethodsTwo independent retrospective observational cohorts were included in this study. The primary training cohort included the data of 1968 patients admitted to the intensive care unit at the Veterans Health Service Medical Center, Seoul, South Korea, from January 2018 to March 2019. The external validation cohort comprised the records of 409 patients admitted to the medical intensive care unit at Seoul National University Hospital, Seoul, South Korea, from January 2019 to December 2019. Datasets of four vital signs (heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation [SpO2]) measured every hour for 10 h were used for the development of the machine learning model. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.ResultsThe machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. Thus, to investigate the importance of variables that influence the performance of the machine learning model, machine learning models were generated for each observation time or vital sign using the RF algorithm. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89). ConclusionsThe mortality prediction model developed in this study using data from only four types of commonly recorded vital signs is simpler than any existing mortality prediction model. This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bongjin Lee ◽  
Kyunghoon Kim ◽  
Hyejin Hwang ◽  
You Sun Kim ◽  
Eun Hee Chung ◽  
...  

AbstractThe aim of this study was to develop a predictive model of pediatric mortality in the early stages of intensive care unit (ICU) admission using machine learning. Patients less than 18 years old who were admitted to ICUs at four tertiary referral hospitals were enrolled. Three hospitals were designated as the derivation cohort for machine learning model development and internal validation, and the other hospital was designated as the validation cohort for external validation. We developed a random forest (RF) model that predicts pediatric mortality within 72 h of ICU admission, evaluated its performance, and compared it with the Pediatric Index of Mortality 3 (PIM 3). The area under the receiver operating characteristic curve (AUROC) of RF model was 0.942 (95% confidence interval [CI] = 0.912–0.972) in the derivation cohort and 0.906 (95% CI = 0.900–0.912) in the validation cohort. In contrast, the AUROC of PIM 3 was 0.892 (95% CI = 0.878–0.906) in the derivation cohort and 0.845 (95% CI = 0.817–0.873) in the validation cohort. The RF model in our study showed improved predictive performance in terms of both internal and external validation and was superior even when compared to PIM 3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eyal Klang ◽  
Benjamin R. Kummer ◽  
Neha S. Dangayach ◽  
Amy Zhong ◽  
M. Arash Kia ◽  
...  

AbstractEarly admission to the neurosciences intensive care unit (NSICU) is associated with improved patient outcomes. Natural language processing offers new possibilities for mining free text in electronic health record data. We sought to develop a machine learning model using both tabular and free text data to identify patients requiring NSICU admission shortly after arrival to the emergency department (ED). We conducted a single-center, retrospective cohort study of adult patients at the Mount Sinai Hospital, an academic medical center in New York City. All patients presenting to our institutional ED between January 2014 and December 2018 were included. Structured (tabular) demographic, clinical, bed movement record data, and free text data from triage notes were extracted from our institutional data warehouse. A machine learning model was trained to predict likelihood of NSICU admission at 30 min from arrival to the ED. We identified 412,858 patients presenting to the ED over the study period, of whom 1900 (0.5%) were admitted to the NSICU. The daily median number of ED presentations was 231 (IQR 200–256) and the median time from ED presentation to the decision for NSICU admission was 169 min (IQR 80–324). A model trained only with text data had an area under the receiver-operating curve (AUC) of 0.90 (95% confidence interval (CI) 0.87–0.91). A structured data-only model had an AUC of 0.92 (95% CI 0.91–0.94). A combined model trained on structured and text data had an AUC of 0.93 (95% CI 0.92–0.95). At a false positive rate of 1:100 (99% specificity), the combined model was 58% sensitive for identifying NSICU admission. A machine learning model using structured and free text data can predict NSICU admission soon after ED arrival. This may potentially improve ED and NSICU resource allocation. Further studies should validate our findings.


2020 ◽  
Vol 49 (1) ◽  
pp. 3-3
Author(s):  
Anil Palepu ◽  
Adit Murali ◽  
Jenna Ballard ◽  
Robert Li ◽  
Samiksha Ramesh ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 145968-145983 ◽  
Author(s):  
Amirhosein Mosavi ◽  
Ataollah Shirzadi ◽  
Bahram Choubin ◽  
Fereshteh Taromideh ◽  
Farzaneh Sajedi Hosseini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document