scholarly journals Predicting adult neuroscience intensive care unit admission from emergency department triage using a retrospective, tabular-free text machine learning approach

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eyal Klang ◽  
Benjamin R. Kummer ◽  
Neha S. Dangayach ◽  
Amy Zhong ◽  
M. Arash Kia ◽  
...  

AbstractEarly admission to the neurosciences intensive care unit (NSICU) is associated with improved patient outcomes. Natural language processing offers new possibilities for mining free text in electronic health record data. We sought to develop a machine learning model using both tabular and free text data to identify patients requiring NSICU admission shortly after arrival to the emergency department (ED). We conducted a single-center, retrospective cohort study of adult patients at the Mount Sinai Hospital, an academic medical center in New York City. All patients presenting to our institutional ED between January 2014 and December 2018 were included. Structured (tabular) demographic, clinical, bed movement record data, and free text data from triage notes were extracted from our institutional data warehouse. A machine learning model was trained to predict likelihood of NSICU admission at 30 min from arrival to the ED. We identified 412,858 patients presenting to the ED over the study period, of whom 1900 (0.5%) were admitted to the NSICU. The daily median number of ED presentations was 231 (IQR 200–256) and the median time from ED presentation to the decision for NSICU admission was 169 min (IQR 80–324). A model trained only with text data had an area under the receiver-operating curve (AUC) of 0.90 (95% confidence interval (CI) 0.87–0.91). A structured data-only model had an AUC of 0.92 (95% CI 0.91–0.94). A combined model trained on structured and text data had an AUC of 0.93 (95% CI 0.92–0.95). At a false positive rate of 1:100 (99% specificity), the combined model was 58% sensitive for identifying NSICU admission. A machine learning model using structured and free text data can predict NSICU admission soon after ED arrival. This may potentially improve ED and NSICU resource allocation. Further studies should validate our findings.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bongjin Lee ◽  
Kyunghoon Kim ◽  
Hyejin Hwang ◽  
You Sun Kim ◽  
Eun Hee Chung ◽  
...  

AbstractThe aim of this study was to develop a predictive model of pediatric mortality in the early stages of intensive care unit (ICU) admission using machine learning. Patients less than 18 years old who were admitted to ICUs at four tertiary referral hospitals were enrolled. Three hospitals were designated as the derivation cohort for machine learning model development and internal validation, and the other hospital was designated as the validation cohort for external validation. We developed a random forest (RF) model that predicts pediatric mortality within 72 h of ICU admission, evaluated its performance, and compared it with the Pediatric Index of Mortality 3 (PIM 3). The area under the receiver operating characteristic curve (AUROC) of RF model was 0.942 (95% confidence interval [CI] = 0.912–0.972) in the derivation cohort and 0.906 (95% CI = 0.900–0.912) in the validation cohort. In contrast, the AUROC of PIM 3 was 0.892 (95% CI = 0.878–0.906) in the derivation cohort and 0.845 (95% CI = 0.817–0.873) in the validation cohort. The RF model in our study showed improved predictive performance in terms of both internal and external validation and was superior even when compared to PIM 3.


2020 ◽  
pp. postgradmedj-2020-138899
Author(s):  
Yiftach Barash ◽  
Shelly Soffer ◽  
Ehud Grossman ◽  
Noam Tau ◽  
Vera Sorin ◽  
...  

ObjectivesPhysicians continuously make tough decisions when discharging patients. Alerting on poor outcomes may help in this decision. This study evaluates a machine learning model for predicting 30-day mortality in emergency department (ED) discharged patients.MethodsWe retrospectively analysed visits of adult patients discharged from a single ED (1/2014–12/2018). Data included demographics, evaluation and treatment in the ED, and discharge diagnosis. The data comprised of both structured and free-text fields. A gradient boosting model was trained to predict mortality within 30 days of release from the ED. The model was trained on data from the years 2014–2017 and validated on data from the year 2018. In order to reduce potential end-of-life bias, a subgroup analysis was performed for non-oncological patients.ResultsOverall, 363 635 ED visits of discharged patients were analysed. The 30-day mortality rate was 0.8%. A majority of the mortality cases (65.3%) had a known oncological disease. The model yielded an area under the curve (AUC) of 0.97 (95% CI 0.96 to 0.97) for predicting 30-day mortality. For a sensitivity of 84% (95% CI 0.81 to 0.86), this model had a false positive rate of 1:20. For patients without a known malignancy, the model yielded an AUC of 0.94 (95% CI 0.92 to 0.95).ConclusionsAlthough not frequent, patients may die following ED discharge. Machine learning-based tools may help ED physicians identify patients at risk. An optimised decision for hospitalisation or palliative management may improve patient care and system resource allocation.


2020 ◽  
Vol 49 (1) ◽  
pp. 3-3
Author(s):  
Anil Palepu ◽  
Adit Murali ◽  
Jenna Ballard ◽  
Robert Li ◽  
Samiksha Ramesh ◽  
...  

2021 ◽  
Author(s):  
Jaeyoung Yang ◽  
Hong-Gook Lim ◽  
Wonhyeong Park ◽  
Dongseok Kim ◽  
Jin Sun Yoon ◽  
...  

Abstract BackgroundPrediction of mortality in intensive care units is very important. Thus, various mortality prediction models have been developed for this purpose. However, they do not accurately reflect the changing condition of the patient in real time. The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using four easy-to-collect vital signs.MethodsTwo independent retrospective observational cohorts were included in this study. The primary training cohort included the data of 1968 patients admitted to the intensive care unit at the Veterans Health Service Medical Center, Seoul, South Korea, from January 2018 to March 2019. The external validation cohort comprised the records of 409 patients admitted to the medical intensive care unit at Seoul National University Hospital, Seoul, South Korea, from January 2019 to December 2019. Datasets of four vital signs (heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation [SpO2]) measured every hour for 10 h were used for the development of the machine learning model. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.ResultsThe machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. Thus, to investigate the importance of variables that influence the performance of the machine learning model, machine learning models were generated for each observation time or vital sign using the RF algorithm. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89). ConclusionsThe mortality prediction model developed in this study using data from only four types of commonly recorded vital signs is simpler than any existing mortality prediction model. This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.


Author(s):  
Jia Luo ◽  
Dongwen Yu ◽  
Zong Dai

It is not quite possible to use manual methods to process the huge amount of structured and semi-structured data. This study aims to solve the problem of processing huge data through machine learning algorithms. We collected the text data of the company’s public opinion through crawlers, and use Latent Dirichlet Allocation (LDA) algorithm to extract the keywords of the text, and uses fuzzy clustering to cluster the keywords to form different topics. The topic keywords will be used as a seed dictionary for new word discovery. In order to verify the efficiency of machine learning in new word discovery, algorithms based on association rules, N-Gram, PMI, andWord2vec were used for comparative testing of new word discovery. The experimental results show that the Word2vec algorithm based on machine learning model has the highest accuracy, recall and F-value indicators.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2102
Author(s):  
Eyal Klang ◽  
Robert Freeman ◽  
Matthew A. Levin ◽  
Shelly Soffer ◽  
Yiftach Barash ◽  
...  

Background & Aims: We aimed at identifying specific emergency department (ED) risk factors for developing complicated acute diverticulitis (AD) and evaluate a machine learning model (ML) for predicting complicated AD. Methods: We analyzed data retrieved from unselected consecutive large bowel AD patients from five hospitals from the Mount Sinai health system, NY. The study time frame was from January 2011 through March 2021. Data were used to train and evaluate a gradient-boosting machine learning model to identify patients with complicated diverticulitis, defined as a need for invasive intervention or in-hospital mortality. The model was trained and evaluated on data from four hospitals and externally validated on held-out data from the fifth hospital. Results: The final cohort included 4997 AD visits. Of them, 129 (2.9%) visits had complicated diverticulitis. Patients with complicated diverticulitis were more likely to be men, black, and arrive by ambulance. Regarding laboratory values, patients with complicated diverticulitis had higher levels of absolute neutrophils (AUC 0.73), higher white blood cells (AUC 0.70), platelet count (AUC 0.68) and lactate (AUC 0.61), and lower levels of albumin (AUC 0.69), chloride (AUC 0.64), and sodium (AUC 0.61). In the external validation cohort, the ML model showed AUC 0.85 (95% CI 0.78–0.91) for predicting complicated diverticulitis. For Youden’s index, the model showed a sensitivity of 88% with a false positive rate of 1:3.6. Conclusions: A ML model trained on clinical measures provides a proof of concept performance in predicting complications in patients presenting to the ED with AD. Clinically, it implies that a ML model may classify low-risk patients to be discharged from the ED for further treatment under an ambulatory setting.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qiangrong Zhai ◽  
Zi Lin ◽  
Hongxia Ge ◽  
Yang Liang ◽  
Nan Li ◽  
...  

AbstractThe number of critically ill patients has increased globally along with the rise in emergency visits. Mortality prediction for critical patients is vital for emergency care, which affects the distribution of emergency resources. Traditional scoring systems are designed for all emergency patients using a classic mathematical method, but risk factors in critically ill patients have complex interactions, so traditional scoring cannot as readily apply to them. As an accurate model for predicting the mortality of emergency department critically ill patients is lacking, this study’s objective was to develop a scoring system using machine learning optimized for the unique case of critical patients in emergency departments. We conducted a retrospective cohort study in a tertiary medical center in Beijing, China. Patients over 16 years old were included if they were alive when they entered the emergency department intensive care unit system from February 2015 and December 2015. Mortality up to 7 days after admission into the emergency department was considered as the primary outcome, and 1624 cases were included to derive the models. Prospective factors included previous diseases, physiologic parameters, and laboratory results. Several machine learning tools were built for 7-day mortality using these factors, for which their predictive accuracy (sensitivity and specificity) was evaluated by area under the curve (AUC). The AUCs were 0.794, 0.840, 0.849 and 0.822 respectively, for the SVM, GBDT, XGBoost and logistic regression model. In comparison with the SAPS 3 model (AUC = 0.826), the discriminatory capability of the newer machine learning methods, XGBoost in particular, is demonstrated to be more reliable for predicting outcomes for emergency department intensive care unit patients.


Sign in / Sign up

Export Citation Format

Share Document