scholarly journals Development of a machine learning model for predicting pediatric mortality in the early stages of intensive care unit admission

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bongjin Lee ◽  
Kyunghoon Kim ◽  
Hyejin Hwang ◽  
You Sun Kim ◽  
Eun Hee Chung ◽  
...  

AbstractThe aim of this study was to develop a predictive model of pediatric mortality in the early stages of intensive care unit (ICU) admission using machine learning. Patients less than 18 years old who were admitted to ICUs at four tertiary referral hospitals were enrolled. Three hospitals were designated as the derivation cohort for machine learning model development and internal validation, and the other hospital was designated as the validation cohort for external validation. We developed a random forest (RF) model that predicts pediatric mortality within 72 h of ICU admission, evaluated its performance, and compared it with the Pediatric Index of Mortality 3 (PIM 3). The area under the receiver operating characteristic curve (AUROC) of RF model was 0.942 (95% confidence interval [CI] = 0.912–0.972) in the derivation cohort and 0.906 (95% CI = 0.900–0.912) in the validation cohort. In contrast, the AUROC of PIM 3 was 0.892 (95% CI = 0.878–0.906) in the derivation cohort and 0.845 (95% CI = 0.817–0.873) in the validation cohort. The RF model in our study showed improved predictive performance in terms of both internal and external validation and was superior even when compared to PIM 3.

2021 ◽  
Author(s):  
Jaeyoung Yang ◽  
Hong-Gook Lim ◽  
Wonhyeong Park ◽  
Dongseok Kim ◽  
Jin Sun Yoon ◽  
...  

Abstract BackgroundPrediction of mortality in intensive care units is very important. Thus, various mortality prediction models have been developed for this purpose. However, they do not accurately reflect the changing condition of the patient in real time. The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using four easy-to-collect vital signs.MethodsTwo independent retrospective observational cohorts were included in this study. The primary training cohort included the data of 1968 patients admitted to the intensive care unit at the Veterans Health Service Medical Center, Seoul, South Korea, from January 2018 to March 2019. The external validation cohort comprised the records of 409 patients admitted to the medical intensive care unit at Seoul National University Hospital, Seoul, South Korea, from January 2019 to December 2019. Datasets of four vital signs (heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation [SpO2]) measured every hour for 10 h were used for the development of the machine learning model. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.ResultsThe machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. Thus, to investigate the importance of variables that influence the performance of the machine learning model, machine learning models were generated for each observation time or vital sign using the RF algorithm. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89). ConclusionsThe mortality prediction model developed in this study using data from only four types of commonly recorded vital signs is simpler than any existing mortality prediction model. This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eyal Klang ◽  
Benjamin R. Kummer ◽  
Neha S. Dangayach ◽  
Amy Zhong ◽  
M. Arash Kia ◽  
...  

AbstractEarly admission to the neurosciences intensive care unit (NSICU) is associated with improved patient outcomes. Natural language processing offers new possibilities for mining free text in electronic health record data. We sought to develop a machine learning model using both tabular and free text data to identify patients requiring NSICU admission shortly after arrival to the emergency department (ED). We conducted a single-center, retrospective cohort study of adult patients at the Mount Sinai Hospital, an academic medical center in New York City. All patients presenting to our institutional ED between January 2014 and December 2018 were included. Structured (tabular) demographic, clinical, bed movement record data, and free text data from triage notes were extracted from our institutional data warehouse. A machine learning model was trained to predict likelihood of NSICU admission at 30 min from arrival to the ED. We identified 412,858 patients presenting to the ED over the study period, of whom 1900 (0.5%) were admitted to the NSICU. The daily median number of ED presentations was 231 (IQR 200–256) and the median time from ED presentation to the decision for NSICU admission was 169 min (IQR 80–324). A model trained only with text data had an area under the receiver-operating curve (AUC) of 0.90 (95% confidence interval (CI) 0.87–0.91). A structured data-only model had an AUC of 0.92 (95% CI 0.91–0.94). A combined model trained on structured and text data had an AUC of 0.93 (95% CI 0.92–0.95). At a false positive rate of 1:100 (99% specificity), the combined model was 58% sensitive for identifying NSICU admission. A machine learning model using structured and free text data can predict NSICU admission soon after ED arrival. This may potentially improve ED and NSICU resource allocation. Further studies should validate our findings.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-324060
Author(s):  
Raghav Sundar ◽  
Nesaretnam Barr Kumarakulasinghe ◽  
Yiong Huak Chan ◽  
Kazuhiro Yoshida ◽  
Takaki Yoshikawa ◽  
...  

ObjectiveTo date, there are no predictive biomarkers to guide selection of patients with gastric cancer (GC) who benefit from paclitaxel. Stomach cancer Adjuvant Multi-Institutional group Trial (SAMIT) was a 2×2 factorial randomised phase III study in which patients with GC were randomised to Pac-S-1 (paclitaxel +S-1), Pac-UFT (paclitaxel +UFT), S-1 alone or UFT alone after curative surgery.DesignThe primary objective of this study was to identify a gene signature that predicts survival benefit from paclitaxel chemotherapy in GC patients. SAMIT GC samples were profiled using a customised 476 gene NanoString panel. A random forest machine-learning model was applied on the NanoString profiles to develop a gene signature. An independent cohort of metastatic patients with GC treated with paclitaxel and ramucirumab (Pac-Ram) served as an external validation cohort.ResultsFrom the SAMIT trial 499 samples were analysed in this study. From the Pac-S-1 training cohort, the random forest model generated a 19-gene signature assigning patients to two groups: Pac-Sensitive and Pac-Resistant. In the Pac-UFT validation cohort, Pac-Sensitive patients exhibited a significant improvement in disease free survival (DFS): 3-year DFS 66% vs 40% (HR 0.44, p=0.0029). There was no survival difference between Pac-Sensitive and Pac-Resistant in the UFT or S-1 alone arms, test of interaction p<0.001. In the external Pac-Ram validation cohort, the signature predicted benefit for Pac-Sensitive (median PFS 147 days vs 112 days, HR 0.48, p=0.022).ConclusionUsing machine-learning techniques on one of the largest GC trials (SAMIT), we identify a gene signature representing the first predictive biomarker for paclitaxel benefit.Trial registration numberUMIN Clinical Trials Registry: C000000082 (SAMIT); ClinicalTrials.gov identifier, 02628951 (South Korean trial)


Author(s):  
Jiandong Zhou ◽  
Gary Tse ◽  
Sharen Lee ◽  
Tong Liu ◽  
William KK Wu ◽  
...  

ABSTRACTBackgroundThe coronavirus disease 2019 (COVID-19) has become a pandemic, placing significant burdens on the healthcare systems. In this study, we tested the hypothesis that a machine learning approach incorporating hidden nonlinear interactions can improve prediction for Intensive care unit (ICU) admission.MethodsConsecutive patients admitted to public hospitals between 1st January and 24th May 2020 in Hong Kong with COVID-19 diagnosed by RT-PCR were included. The primary endpoint was ICU admission.ResultsThis study included 1043 patients (median age 35 (IQR: 32-37; 54% male). Nineteen patients were admitted to ICU (median hospital length of stay (LOS): 30 days, median ICU LOS: 16 days). ICU patients were more likely to be prescribed angiotensin converting enzyme inhibitors/angiotensin receptor blockers, anti-retroviral drugs lopinavir/ritonavir and remdesivir, ribavirin, steroids, interferon-beta and hydroxychloroquine. Significant predictors of ICU admission were older age, male sex, prior coronary artery disease, respiratory diseases, diabetes, hypertension and chronic kidney disease, and activated partial thromboplastin time, red cell count, white cell count, albumin and serum sodium. A tree-based machine learning model identified most informative characteristics and hidden interactions that can predict ICU admission. These were: low red cells with 1) male, 2) older age, 3) low albumin, 4) low sodium or 5) prolonged APTT. A five-fold cross validation confirms superior performance of this model over baseline models including XGBoost, LightGBM, random forests, and multivariate logistic regression.ConclusionsA machine learning model including baseline risk factors and their hidden interactions can accurately predict ICU admission in COVID-19.


2020 ◽  
Vol 49 (1) ◽  
pp. 3-3
Author(s):  
Anil Palepu ◽  
Adit Murali ◽  
Jenna Ballard ◽  
Robert Li ◽  
Samiksha Ramesh ◽  
...  

2021 ◽  
Author(s):  
Chen Zhu ◽  
Zidu Xu ◽  
Yaowen Gu ◽  
Si Zheng ◽  
Xiangyu Sun ◽  
...  

BACKGROUND Poststroke immobility gets patients more vulnerable to stroke-relevant complications. Urinary tract infection (UTI) is one of major nosocomial infections significantly affecting the outcomes of immobile stroke patients. Previous studies have identified several risk factors, but it is still challenging to accurately estimate personal UTI risk due to unclear interaction of various factors and variability of individual characteristics. This calls for more precise and trust-worthy predictive models to assist with potential UTI identification. OBJECTIVE The aim of this study was to develop predictive models for UTI risk identification for immobile stroke patients. A prospective analysis was conducted to evaluate the effectiveness and clinical interpretability of the models. METHODS The data used in this study were collected from the Common Complications of Bedridden Patients and the Construction of Standardized Nursing Intervention Model (CCBPC). Derivation cohort included data of 3982 immobile stroke patients collected during CCBPC-I, from November 1, 2015 to June 30, 2016; external validation cohort included data of 3837 immobile stroke patients collected during CCBPC-II, from November 1, 2016 to July 30, 2017. 6 machine learning models and an ensemble learning model were derived based on 80% of derivation cohort and its effectiveness was evaluated with the remaining 20% of derivation cohort data. We further compared the effectiveness of predictive models in external validation cohort. The performance of logistic regression without regularization was used as a reference. We used Shapley additive explanation values to determine feature importance and examine the clinical significance of prediction models. Shapely values of the factors were calculated to represent the magnitude, prevalence, and direction of their effects, and were further visualized in a summary plot. RESULTS A total of 103(2.59%) patients were diagnosed with UTI in derivation cohort(N=3982); the internal validation cohort (N=797) shared the same incidence. The external validation cohort had a UTI incidence of 1.38% (N=53). Evaluation results showed that the ensemble learning model performed the best in area under the receiver operating characteristic (ROC) curve in internal validation, up to 82.2%; second best in external validation, 80.8%. In addition, the ensemble learning model performed the best sensitivity in both internal and external validation sets (80.9% and 81.1%, respectively). We also identified seven UTI risk factors (pneumonia, glucocorticoid use, female sex, mixed cerebrovascular disease, increased age, prolonged length of stay, and duration of catheterization) contributing most to the predictive model, thus demonstrating the clinical interpretability of model. CONCLUSIONS Our ensemble learning model demonstrated promising performance. Identifying UTI risk and detecting high risk factors among immobile stroke patients would allow more selective and effective use of preventive interventions, thus improving clinical outcomes. Future work should focus on developing a more concise scoring tool and prospectively examining the model in practical use.


2021 ◽  
Author(s):  
Yuki KATAOKA

Rationale: Currently available machine learning models for diagnosing COVID-19 based on computed tomography (CT) images are limited due to concerns regarding methodological flaws or underlying biases in the evaluation process. Objectives: We aimed to develop and externally validate a novel machine learning model that can classify CT image findings as positive or negative for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR).Methods: We used 3128 images from a wide variety of two-gate data sources for the development and ablation study of the machine learning model. A total of 633 COVID-19 cases and 2295 non-COVID-19 cases were included in the study. We randomly divided cases into a development set and ablation set at a ratio of 8:2. For the ablation study, we used another dataset including 150 cases of interstitial pneumonia among non-COVID-19 images. For external validation, we used 893 images from 740 consecutive patients at 11 acute care hospitals suspected of having COVID-19 at the time of diagnosis. The dataset included 343 COVID-19 patients. The reference standard was RT-PCR.Result: In ablation study, using interstitial pneumonia images, the specificity of the model were 0.986 for usual interstitial pneumonia pattern, 0.820 for non-specific interstitial pneumonia pattern, 0.400 for organizing pneumonia pattern. In the external validation study, the sensitivity and specificity of the model were 0.869 and 0.432, respectively, at the low-level cutoff, and 0.724 and 0.721, respectively, at the high-level cutoff.Conclusions: Our machine learning model exhibited a high sensitivity in external validation datasets and may assist physicians to rule out COVID-19 diagnosis in a timely manner. Further studies are warranted to improve model specificity.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2102
Author(s):  
Eyal Klang ◽  
Robert Freeman ◽  
Matthew A. Levin ◽  
Shelly Soffer ◽  
Yiftach Barash ◽  
...  

Background & Aims: We aimed at identifying specific emergency department (ED) risk factors for developing complicated acute diverticulitis (AD) and evaluate a machine learning model (ML) for predicting complicated AD. Methods: We analyzed data retrieved from unselected consecutive large bowel AD patients from five hospitals from the Mount Sinai health system, NY. The study time frame was from January 2011 through March 2021. Data were used to train and evaluate a gradient-boosting machine learning model to identify patients with complicated diverticulitis, defined as a need for invasive intervention or in-hospital mortality. The model was trained and evaluated on data from four hospitals and externally validated on held-out data from the fifth hospital. Results: The final cohort included 4997 AD visits. Of them, 129 (2.9%) visits had complicated diverticulitis. Patients with complicated diverticulitis were more likely to be men, black, and arrive by ambulance. Regarding laboratory values, patients with complicated diverticulitis had higher levels of absolute neutrophils (AUC 0.73), higher white blood cells (AUC 0.70), platelet count (AUC 0.68) and lactate (AUC 0.61), and lower levels of albumin (AUC 0.69), chloride (AUC 0.64), and sodium (AUC 0.61). In the external validation cohort, the ML model showed AUC 0.85 (95% CI 0.78–0.91) for predicting complicated diverticulitis. For Youden’s index, the model showed a sensitivity of 88% with a false positive rate of 1:3.6. Conclusions: A ML model trained on clinical measures provides a proof of concept performance in predicting complications in patients presenting to the ED with AD. Clinically, it implies that a ML model may classify low-risk patients to be discharged from the ED for further treatment under an ambulatory setting.


Sign in / Sign up

Export Citation Format

Share Document