Towards Approximating Population-Level Mental Health in Thailand Using Large-Scale Social Media Data

2021 ◽  
pp. 334-343
Author(s):  
Krittin Chatrinan ◽  
Anon Kangpanich ◽  
Tanawin Wichit ◽  
Thanapon Noraset ◽  
Suppawong Tuarob ◽  
...  
2020 ◽  
Vol 3 (1) ◽  
pp. 433-458 ◽  
Author(s):  
Rion Brattig Correia ◽  
Ian B. Wood ◽  
Johan Bollen ◽  
Luis M. Rocha

Social media data have been increasingly used to study biomedical and health-related phenomena. From cohort-level discussions of a condition to population-level analyses of sentiment, social media have provided scientists with unprecedented amounts of data to study human behavior associated with a variety of health conditions and medical treatments. Here we review recent work in mining social media for biomedical, epidemiological, and social phenomena information relevant to the multilevel complexity of human health. We pay particular attention to topics where social media data analysis has shown the most progress, including pharmacovigilance and sentiment analysis, especially for mental health. We also discuss a variety of innovative uses of social media data for health-related applications as well as important limitations of social media data access and use.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 114851-114861 ◽  
Author(s):  
Zhiguang Zhou ◽  
Xinlong Zhang ◽  
Xiaoyun Zhou ◽  
Yuhua Liu

2021 ◽  
Author(s):  
Vishal Dey ◽  
Peter Krasniak ◽  
Minh Nguyen ◽  
Clara Lee ◽  
Xia Ning

BACKGROUND A new illness can come to public attention through social media before it is medically defined, formally documented, or systematically studied. One example is a condition known as breast implant illness (BII), which has been extensively discussed on social media, although it is vaguely defined in the medical literature. OBJECTIVE The objective of this study is to construct a data analysis pipeline to understand emerging illnesses using social media data and to apply the pipeline to understand the key attributes of BII. METHODS We constructed a pipeline of social media data analysis using natural language processing and topic modeling. Mentions related to signs, symptoms, diseases, disorders, and medical procedures were extracted from social media data using the clinical Text Analysis and Knowledge Extraction System. We mapped the mentions to standard medical concepts and then summarized these mapped concepts as topics using latent Dirichlet allocation. Finally, we applied this pipeline to understand BII from several BII-dedicated social media sites. RESULTS Our pipeline identified topics related to toxicity, cancer, and mental health issues that were highly associated with BII. Our pipeline also showed that cancers, autoimmune disorders, and mental health problems were emerging concerns associated with breast implants, based on social media discussions. Furthermore, the pipeline identified mentions such as rupture, infection, pain, and fatigue as common self-reported issues among the public, as well as concerns about toxicity from silicone implants. CONCLUSIONS Our study could inspire future studies on the suggested symptoms and factors of BII. Our study provides the first analysis and derived knowledge of BII from social media using natural language processing techniques and demonstrates the potential of using social media information to better understand similar emerging illnesses. CLINICALTRIAL


2019 ◽  
Vol 38 (5) ◽  
pp. 633-650 ◽  
Author(s):  
Josh Pasek ◽  
Colleen A. McClain ◽  
Frank Newport ◽  
Stephanie Marken

Researchers hoping to make inferences about social phenomena using social media data need to answer two critical questions: What is it that a given social media metric tells us? And who does it tell us about? Drawing from prior work on these questions, we examine whether Twitter sentiment about Barack Obama tells us about Americans’ attitudes toward the president, the attitudes of particular subsets of individuals, or something else entirely. Specifically, using large-scale survey data, this study assesses how patterns of approval among population subgroups compare to tweets about the president. The findings paint a complex picture of the utility of digital traces. Although attention to subgroups improves the extent to which survey and Twitter data can yield similar conclusions, the results also indicate that sentiment surrounding tweets about the president is no proxy for presidential approval. Instead, after adjusting for demographics, these two metrics tell similar macroscale, long-term stories about presidential approval but very different stories at a more granular level and over shorter time periods.


Author(s):  
Suppawong Tuarob ◽  
Conrad S. Tucker

The authors of this work propose a Knowledge Discovery in Databases (KDD) model for predicting product market adoption and longevity using large scale, social media data. Social media data, available through sites such as Twitter® and Facebook®, have been shown to be leading indicators and predictors of events ranging from influenza spread, financial stock market prices, and movie revenues. Being ubiquitous and colloquial in nature allows users to honestly express their opinions in a unified, dynamic manner. This makes social media a relatively new data gathering source that can potentially appeal to designers and enterprise decision makers aiming to understand consumers response to their upcoming/newly launched products. Existing design methodologies for leveraging large scale data have traditionally relied on product reviews available on the internet to mine product information. However, such web reviews often come from disparate sources, making the aggregation and knowledge discovery process quite cumbersome, especially reviews for poorly received products. Furthermore, such web reviews have not been shown to be strong indicators of new product market adoption. In this paper, the authors demonstrate how social media can be used to predict and mine information relating to product features, product competition and market adoption. In particular, the authors analyze the sentiment in tweets and use the results to predict product sales. The authors present a mathematical model that can quantify the correlations between social media sentiment and product market adoption in an effort to compute the ability to stay in the market of individual products. The proposed technique involves computing the Subjectivity, Polarity, and Favorability of the product. Finally, the authors utilize Information Retrieval techniques to mine users’ opinions about strong, weak, and controversial features of a given product model. The authors evaluate their approaches using the real-world smartphone data, which are obtained from www.statista.com and www.gsmarena.com.


Author(s):  
Xiaomo Liu ◽  
Armineh Nourbakhsh ◽  
Quanzhi Li ◽  
Sameena Shah ◽  
Robert Martin ◽  
...  

2020 ◽  
Vol 376 ◽  
pp. 244-255 ◽  
Author(s):  
Zhiguang Zhou ◽  
Xinlong Zhang ◽  
Zhiyong Guo ◽  
Yuhua Liu

2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Suppawong Tuarob ◽  
Conrad S. Tucker

Lead users play a vital role in next generation product development, as they help designers discover relevant product feature preferences months or even years before they are desired by the general customer base. Existing design methodologies proposed to extract lead user preferences are typically constrained by temporal, geographic, size, and heterogeneity limitations. To mitigate these challenges, the authors of this work propose a set of mathematical models that mine social media networks for lead users and the product features that they express relating to specific products. The authors hypothesize that: (i) lead users are discoverable from large scale social media networks and (ii) product feature preferences, mined from lead user social media data, represent product features that do not currently exist in product offerings but will be desired in future product launches. An automated approach to lead user product feature identification is proposed to identify latent features (product features unknown to the public) from social media data. These latent features then serve as the key to discovering innovative users from the ever increasing pool of social media users. The authors collect 2.1 × 109 social media messages in the United States during a period of 31 months (from March 2011 to September 2013) in order to determine whether lead user preferences are discoverable and relevant to next generation cell phone designs.


Sign in / Sign up

Export Citation Format

Share Document