Stable Algorithms for Solving the Problem of Determining the Weighting Coefficients of Neural Networks with Radial-Basis Activation Functions

Author(s):  
Husan Igamberdiev ◽  
Azizbek Yusupbekov ◽  
Uktam Mamirov ◽  
Inomjon Abdukaxxarov
Author(s):  
Volodymyr Shymkovych ◽  
Sergii Telenyk ◽  
Petro Kravets

AbstractThis article introduces a method for realizing the Gaussian activation function of radial-basis (RBF) neural networks with their hardware implementation on field-programmable gaits area (FPGAs). The results of modeling of the Gaussian function on FPGA chips of different families have been presented. RBF neural networks of various topologies have been synthesized and investigated. The hardware component implemented by this algorithm is an RBF neural network with four neurons of the latent layer and one neuron with a sigmoid activation function on an FPGA using 16-bit numbers with a fixed point, which took 1193 logic matrix gate (LUTs—LookUpTable). Each hidden layer neuron of the RBF network is designed on an FPGA as a separate computing unit. The speed as a total delay of the combination scheme of the block RBF network was 101.579 ns. The implementation of the Gaussian activation functions of the hidden layer of the RBF network occupies 106 LUTs, and the speed of the Gaussian activation functions is 29.33 ns. The absolute error is ± 0.005. The Spartan 3 family of chips for modeling has been used to get these results. Modeling on chips of other series has been also introduced in the article. RBF neural networks of various topologies have been synthesized and investigated. Hardware implementation of RBF neural networks with such speed allows them to be used in real-time control systems for high-speed objects.


2019 ◽  
Vol 12 (3) ◽  
pp. 156-161 ◽  
Author(s):  
Aman Dureja ◽  
Payal Pahwa

Background: In making the deep neural network, activation functions play an important role. But the choice of activation functions also affects the network in term of optimization and to retrieve the better results. Several activation functions have been introduced in machine learning for many practical applications. But which activation function should use at hidden layer of deep neural networks was not identified. Objective: The primary objective of this analysis was to describe which activation function must be used at hidden layers for deep neural networks to solve complex non-linear problems. Methods: The configuration for this comparative model was used by using the datasets of 2 classes (Cat/Dog). The number of Convolutional layer used in this network was 3 and the pooling layer was also introduced after each layer of CNN layer. The total of the dataset was divided into the two parts. The first 8000 images were mainly used for training the network and the next 2000 images were used for testing the network. Results: The experimental comparison was done by analyzing the network by taking different activation functions on each layer of CNN network. The validation error and accuracy on Cat/Dog dataset were analyzed using activation functions (ReLU, Tanh, Selu, PRelu, Elu) at number of hidden layers. Overall the Relu gave best performance with the validation loss at 25th Epoch 0.3912 and validation accuracy at 25th Epoch 0.8320. Conclusion: It is found that a CNN model with ReLU hidden layers (3 hidden layers here) gives best results and improve overall performance better in term of accuracy and speed. These advantages of ReLU in CNN at number of hidden layers are helpful to effectively and fast retrieval of images from the databases.


2021 ◽  
Vol 11 (15) ◽  
pp. 6704
Author(s):  
Jingyong Cai ◽  
Masashi Takemoto ◽  
Yuming Qiu ◽  
Hironori Nakajo

Despite being heavily used in the training of deep neural networks (DNNs), multipliers are resource-intensive and insufficient in many different scenarios. Previous discoveries have revealed the superiority when activation functions, such as the sigmoid, are calculated by shift-and-add operations, although they fail to remove multiplications in training altogether. In this paper, we propose an innovative approach that can convert all multiplications in the forward and backward inferences of DNNs into shift-and-add operations. Because the model parameters and backpropagated errors of a large DNN model are typically clustered around zero, these values can be approximated by their sine values. Multiplications between the weights and error signals are transferred to multiplications of their sine values, which are replaceable with simpler operations with the help of the product to sum formula. In addition, a rectified sine activation function is utilized for further converting layer inputs into sine values. In this way, the original multiplication-intensive operations can be computed through simple add-and-shift operations. This trigonometric approximation method provides an efficient training and inference alternative for devices with insufficient hardware multipliers. Experimental results demonstrate that this method is able to obtain a performance close to that of classical training algorithms. The approach we propose sheds new light on future hardware customization research for machine learning.


Author(s):  
Pragati Priyadarshini Sahu ◽  
Abhilas Swain ◽  
Radha Kanta Sarangi

2021 ◽  
Vol 163 ◽  
pp. 2137-2152
Author(s):  
Despina Karamichailidou ◽  
Vasiliki Kaloutsa ◽  
Alex Alexandridis

Sign in / Sign up

Export Citation Format

Share Document