Advances in Design Engineering II

2022 ◽  
Keyword(s):  
Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amr Radwan ◽  
Huihui Jin ◽  
Daping He ◽  
Shichun Mu

AbstractThe core reactions for fuel cells, rechargeable metal–air batteries, and hydrogen fuel production are the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), which are heavily dependent on the efficiency of electrocatalysts. Enormous attempts have previously been devoted in non-noble electrocatalysts born out of metal–organic frameworks (MOFs) for ORR, OER, and HER applications, due to the following advantageous reasons: (i) The significant porosity eases the electrolyte diffusion; (ii) the supreme catalyst–electrolyte contact area enhances the diffusion efficiency; and (iii) the electronic conductivity can be extensively increased owing to the unique construction block subunits for MOFs-derived electrocatalysis. Herein, the recent progress of MOFs-derived electrocatalysts including synthesis protocols, design engineering, DFT calculations roles, and energy applications is discussed and reviewed. It can be concluded that the elevated ORR, OER, and HER performances are attributed to an advantageously well-designed high-porosity structure, significant surface area, and plentiful active centers. Furthermore, the perspectives of MOF-derived electrocatalysts for the ORR, OER, and HER are presented.


2021 ◽  
Vol 1 ◽  
pp. 1373-1382
Author(s):  
Avril Thomson ◽  
Hilary Grierson

AbstractThe paper reports on a study that aims to gain an understanding of how senior engineering design students engage and attain throughout the various stages of the design process during a major design project. Following a literature review it sets out to answer 3 main research questionsQ1. Do students engage more with certain stages of the design process during major project work?;Q2. Do students attain better during certain phases of the design process during major project ?Q3. Is there a difference in this attainment between year groups of the same degree programme ?The methodology adopted employs an analysis of marks and an online questionnaire to collect data. Patterns and trends in how senior BEng and MEng Product Design Engineering students engage and attain within the design process are presented, identified and discussed and in turn used to inform reflection on the research questions set.


Sign in / Sign up

Export Citation Format

Share Document