The Origin and Evolution of H1N1 Pandemic Influenza Viruses

Author(s):  
Robert G. Webster ◽  
Richard J. Webby ◽  
Michael Perdue
mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Alain Gagnon ◽  
Enrique Acosta ◽  
Stacey Hallman ◽  
Robert Bourbeau ◽  
Lisa Y. Dillon ◽  
...  

ABSTRACT Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 “swine flu” pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 “Spanish flu.” Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 “swine flu” pandemic and during the resurgent 2013–2014 H1N1 outbreak for those born at the time of the 1957 H2N2 “Asian flu” pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics. IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918—when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest levels of excess mortality. Here, we demonstrate that this phenomenon was not unique to the 1918 H1N1 pandemic but that it also occurred during the contemporary 2009 H1N1 pandemic and 2013–2014 H1N1-dominated season for those born during the heterosubtypic 1957 H2N2 “Asian flu” pandemic. These data highlight the heretofore underappreciated phenomenon that, in certain instances, prior exposure to pandemic influenza virus strains can enhance susceptibility during subsequent pandemics. These results have important implications for pandemic risk assessment and should inform laboratory studies aimed at uncovering the mechanism responsible for this effect.


2011 ◽  
Vol 5 (S1) ◽  
Author(s):  
M Naughtin ◽  
S Mardy ◽  
S San ◽  
JC Dyason ◽  
M von Itztein ◽  
...  

2012 ◽  
Vol 18 (11) ◽  
pp. 1905-1907
Author(s):  
Isaac B. Weisfuse ◽  
Tshidi Tsibane ◽  
Kevin J. Konty ◽  
Joseph R. Egger ◽  
Elizabeth Needham Waddell ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Colin A Russell ◽  
Peter M Kasson ◽  
Ruben O Donis ◽  
Steven Riley ◽  
John Dunbar ◽  
...  

Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response.


2010 ◽  
Vol 84 (15) ◽  
pp. 7695-7702 ◽  
Author(s):  
Grace L. Chen ◽  
Elaine W. Lamirande ◽  
Chin-Fen Yang ◽  
Hong Jin ◽  
George Kemble ◽  
...  

ABSTRACT H2 influenza viruses have not circulated in humans since 1968, and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The development of an H2 pandemic influenza virus vaccine candidate should therefore be considered a priority in pandemic influenza preparedness planning. We selected a group of geographically and temporally diverse wild-type H2 influenza viruses and evaluated the kinetics of replication and compared the ability of these viruses to induce a broadly cross-reactive antibody response in mice and ferrets. In both mice and ferrets, A/Japan/305/1957 (H2N2), A/mallard/NY/1978 (H2N2), and A/swine/MO/2006 (H2N3) elicited the broadest cross-reactive antibody responses against heterologous H2 influenza viruses as measured by hemagglutination inhibition and microneutralization assays. These data suggested that these three viruses may be suitable candidates for development as live attenuated H2 pandemic influenza virus vaccines.


Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


2009 ◽  
Vol 40 (8) ◽  
pp. 673-676 ◽  
Author(s):  
José Santos-Preciado ◽  
Carlos Franco-Paredes ◽  
Isabel Hernandez-Flores ◽  
Ildefonso Tellez ◽  
Carlos Del Rio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document