Wind Fluctuations near a Cold Vortex-Tropopause Funnel System Observed by the MU Radar

1989 ◽  
pp. 463-479
Author(s):  
Shoichiro Fukao ◽  
Manabu D. Yamanaka ◽  
Hiromasa Matsumoto ◽  
Toru Sato ◽  
Toshitaka Tsuda ◽  
...  
Keyword(s):  
1989 ◽  
Vol 130 (2-3) ◽  
pp. 463-479 ◽  
Author(s):  
Shoichiro Fukao ◽  
Manabu D. Yamanaka ◽  
Hiromasa Matsumoto ◽  
Toru Sato ◽  
Toshitaka Tsuda ◽  
...  
Keyword(s):  

2017 ◽  
Vol 35 (3) ◽  
pp. 423-441 ◽  
Author(s):  
Hubert Luce ◽  
Lakshmi Kantha ◽  
Hiroyuki Hashiguchi ◽  
Dale Lawrence ◽  
Masanori Yabuki ◽  
...  

Abstract. New comparisons between the square of the generalized potential refractive index gradient M2, estimated from the very high-frequency (VHF) Middle and Upper Atmosphere (MU) Radar, located at Shigaraki, Japan, and unmanned aerial vehicle (UAV) measurements are presented. These comparisons were performed at unprecedented temporal and range resolutions (1–4 min and  ∼  20 m, respectively) in the altitude range  ∼  1.27–4.5 km from simultaneous and nearly collocated measurements made during the ShUREX (Shigaraki UAV-Radar Experiment) 2015 campaign. Seven consecutive UAV flights made during daytime on 7 June 2015 were used for this purpose. The MU Radar was operated in range imaging mode for improving the range resolution at vertical incidence (typically a few tens of meters). The proportionality of the radar echo power to M2 is reported for the first time at such high time and range resolutions for stratified conditions for which Fresnel scatter or a reflection mechanism is expected. In more complex features obtained for a range of turbulent layers generated by shear instabilities or associated with convective cloud cells, M2 estimated from UAV data does not reproduce observed radar echo power profiles. Proposed interpretations of this discrepancy are presented.


1986 ◽  
Vol 48 (11-12) ◽  
pp. 1269-1278 ◽  
Author(s):  
Shoichiro Fukao ◽  
Toru Sato ◽  
Toshitaka Tsuda ◽  
Mamoru Yamamoto ◽  
Susumu Kato

2010 ◽  
Vol 138 (2) ◽  
pp. 438-452 ◽  
Author(s):  
Hubert Luce ◽  
Takuji Nakamura ◽  
Masayuki K. Yamamoto ◽  
Mamoru Yamamoto ◽  
Shoichiro Fukao

Abstract Turbulence generation mechanisms prevalent in the atmosphere are mainly shear instabilities, breaking of internal buoyancy waves, and convective instabilities such as thermal convection due to heating of the ground. In the present work, clear-air turbulence underneath a cirrus cloud base is described owing to coincident observations from the VHF (46.5 MHz) middle and upper atmosphere (MU) radar, a Rayleigh–Mie–Raman (RMR) lidar, and a balloon radiosonde on 7–8 June 2006 (at Shigaraki, Japan; 34.85°N, 136.10°E). Time–height cross section of lidar backscatter ratio obtained at 2206 LT 7 June 2006 showed the presence of a cirrus layer between 8.0 and 12.5 km MSL. Downward-penetrating structures of ice crystals with horizontal and vertical extents of 1.0–4.0 km and 200–800 m, respectively, have been detected at the cirrus cloud base for about 35 min. At the same time, the MU radar data revealed clear-air turbulence layers developing downward from the cloud base in the environment of the protuberances detected by the RMR lidar. Their maximum depth was about 2.0 km for about 1.5 h. They were associated with oscillatory vertical wind perturbations of up to ±1.5 m s−1 and variances of Doppler spectrum of 0.2–1.5 m−2 s−2. Analysis of the data suggests that the turbulence and the downward penetration of cloudy air were possibly the consequence of a convective instability (rather than a dynamical shear instability) that was likely due to sublimation of ice crystals in the subcloud region. Downward clear-air motions measured by the MU radar were associated with the descending protuberances, and updrafts were observed between them. These observations suggest that the cloudy air might have been pushed down by the downdrafts of the convective instability and pushed up by the updrafts to form the observed protuberances at the cloud base. These structures may be virga or perhaps more likely mamma as reported by recent observations of cirrus mamma with similar instruments and by numerical simulations.


Author(s):  
Toshitaka Tsuda ◽  
Tatsuhiro Adachi ◽  
Yoshihisa Masuda ◽  
Shoichiro Fukao ◽  
Susumu Kato

1989 ◽  
Vol 41 (7) ◽  
pp. 597-611 ◽  
Author(s):  
T. SARYO ◽  
M. TAKEDA ◽  
T. ARAKI ◽  
T. SATO ◽  
T. TSUDA ◽  
...  

2020 ◽  
Author(s):  
Daniel Kastinen ◽  
Johan Kero

Abstract. Meteors and hard targets produce coherent radar echoes. If measured with an interferometric radar system, these echoes can be used to determine the position of the target through finding the Direction Of Arrival (DOA) of the incoming echo onto the radar. If the DOA of meteor trail plasma drifting with the ambient atmosphere is determined, the neutral wind at the observation altitude can be calculated. Specular meteor trail radars have become widespread scientific instruments to study atmospheric dynamics. Meteor head echo measurements also contribute to studies of the atmosphere as the meteoroid input of extraterrestrial material is relevant for a plethora of atmospheric phenomena. Depending on the spatial configuration of radar receiving antennas and their individual gain patterns, there may be an ambiguity problem when determining the DOA of an echo. Radars that are theoretically ambiguity free are known to still have ambiguities that depend on the total radar Signal to Noise Ratio (SNR). In this study we investigate robust methods which are easy to implement to determine the effect of ambiguities on any hard target DOA determination by interferometric radar systems. We apply these methods specifically to simulate four different radar systems measuring meteor head and trail echoes using the multiple signal classification (MUSIC) DOA determination algorithm. The four radar systems are the middle and upper atmosphere (MU) radar in Japan, a generic Jones 2.5λ specular meteor trail radar configuration, the Middle Atmosphere Alomar Radar System (MAARSY) radar in Norway and the The Program of the Antarctic Syowa Mesosphere Stratosphere Troposphere Incoherent Scatter (PANSY) radar in the Antarctic. We also examined a slightly perturbed Jones 2.5λ configuration used as a meteor trail echo receiver for the PANSY radar. All the results are derived from simulations and their purpose is to grant understanding of the behaviour of DOA determination. General results are: there may be a region of SNRs where ambiguities are relevant; Monte Carlo simulation determines this region and if it exists; the MUSIC function peak value is directly correlated with the ambiguous region; a Bayesian method is presented that may be able to analyse echoes from this region; the DOA of echoes with SNRs larger then this region are perfectly determined; the DOA of echoes with SNRs smaller then this region completely fail to be determined; the location of this region is shifted based on the total SNR versus the channel SNR in the direction of the target; asymmetric subgroups can cause ambiguities even for ambiguity free radars. For a DOA located at the zenith, the end of the ambiguous region is located at 17 dB SNR for the MU radar and 3 dB SNR for the PANSY radar. The Jones radars are usually used to measure specular trail echoes far from zenith. The ambiguous region for a DOA at 75.5° elevation and 0° azimuth ends at 12 dB SNR. Using the Bayesian method it may be possible to analyse echoes down to 4 dB SNR for the Jones configuration, given enough data points from the same target. The PANSY meteor trail echo receiver did not deviate significantly from the generic Jones configuration. The MAARSY radar could not resolve arbitrary DOAs sufficiently well to determine a stable region. However, if the DOA search is restricted to 70° elevation or above by assumption, stable DOA determination occurs above 15 dB SNR.


2001 ◽  
Vol 19 (8) ◽  
pp. 925-931 ◽  
Author(s):  
M. Teshiba ◽  
H. Hashiguchi ◽  
S. Fukao ◽  
Y. Shibagaki

Abstract. Typhoon 9707 (Opal) was observed with the VHF-band Middle and Upper atmosphere (MU) radar, an L-band boundary layer radar (BLR), and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range) from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde soundings. In the convective precipitating clouds, the regions of strong and weak reflectivities were well associated with those of updraft and downdraft, respectively.Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; precipitation) Radio science (remote sensing)


Sign in / Sign up

Export Citation Format

Share Document