Comparison of Data and Derived Quantities for the Middle Atmosphere of the Southern Hemisphere

1989 ◽  
pp. 195-212
Author(s):  
W. L. Grose ◽  
A. O’Neill
2006 ◽  
Vol 134 (2) ◽  
pp. 498-518 ◽  
Author(s):  
Douglas R. Allen ◽  
Lawrence Coy ◽  
Stephen D. Eckermann ◽  
John P. McCormack ◽  
Gloria L. Manney ◽  
...  

Abstract A high-altitude version of the Navy Operational Global Atmospheric Prediction System (NOGAPS) spectral forecast model is used to simulate the unusual September 2002 Southern Hemisphere stratospheric major warming. Designated as NOGAPS-Advanced Level Physics and High Altitude (NOGAPS-ALPHA), this model extends from the surface to 0.005 hPa (∼85 km altitude) and includes modifications to multiple components of the operational NOGAPS system, including a new radiative heating scheme, middle-atmosphere gravity wave drag parameterizations, hybrid vertical coordinate, upper-level meteorological initialization, and radiatively active prognostic ozone with parameterized photochemistry. NOGAPS-ALPHA forecasts (hindcasts) out to 6 days capture the main features of the major warming, such as the zonal mean wind reversal, planetary-scale wave amplification, large upward Eliassen–Palm (EP) fluxes, and splitting of the polar vortex in the middle stratosphere. Forecasts beyond 6 days have reduced upward EP flux in the lower stratosphere, reduced amplitude of zonal wavenumbers 2 and 3, and a middle stratospheric vortex that does not split. Three-dimensional EP-flux diagnostics in the troposphere reveal that the longer forecasts underestimate upward-propagating planetary wave energy emanating from a significant blocking pattern over the South Atlantic that played a large role in forcing the major warming. Forecasts of less than 6 days are initialized with the blocking in place, and therefore are not required to predict the blocking onset. For a more thorough skill assessment, NOGAPS-ALPHA forecasts over 3 weeks during September–October 2002 are compared with operational NOGAPS 5-day forecasts made at the time. NOGAPS-ALPHA forecasts initialized with 2002 operational NOGAPS analyses show a modest improvement in skill over the NOGAPS operational forecasts. An additional, larger improvement is obtained when NOGAPS-ALPHA is initialized with reanalyzed 2002 fields produced with the currently operational (as of October 2003) Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS). Thus the combination of higher model top, better physical parameterizations, and better initial conditions all yield improved forecasting skill over the NOGAPS forecasts issued operationally at the time.


2020 ◽  
Vol 47 (19) ◽  
Author(s):  
S. Eswaraiah ◽  
Jeong‐Han Kim ◽  
Wonseok Lee ◽  
Junyoung Hwang ◽  
Kondapalli Niranjan Kumar ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Sunkara Eswaraiah ◽  
Changsup Lee ◽  
Wonseok Lee ◽  
Yong Ha Kim ◽  
Kondapalli Niranjan Kumar ◽  
...  

2010 ◽  
Vol 23 (18) ◽  
pp. 5002-5020 ◽  
Author(s):  
Charles McLandress ◽  
Andreas I. Jonsson ◽  
David A. Plummer ◽  
M. Catherine Reader ◽  
John F. Scinocca ◽  
...  

Abstract A version of the Canadian Middle Atmosphere Model that is coupled to an ocean is used to investigate the separate effects of climate change and ozone depletion on the dynamics of the Southern Hemisphere (SH) stratosphere. This is achieved by performing three sets of simulations extending from 1960 to 2099: 1) greenhouse gases (GHGs) fixed at 1960 levels and ozone depleting substances (ODSs) varying in time, 2) ODSs fixed at 1960 levels and GHGs varying in time, and 3) both GHGs and ODSs varying in time. The response of various dynamical quantities to the GHG and ODS forcings is shown to be additive; that is, trends computed from the sum of the first two simulations are equal to trends from the third. Additivity is shown to hold for the zonal mean zonal wind and temperature, the mass flux into and out of the stratosphere, and the latitudinally averaged wave drag in SH spring and summer, as well as for final warming dates. Ozone depletion and recovery causes seasonal changes in lower-stratosphere mass flux, with reduced polar downwelling in the past followed by increased downwelling in the future in SH spring, and the reverse in SH summer. These seasonal changes are attributed to changes in wave drag caused by ozone-induced changes in the zonal mean zonal winds. Climate change, on the other hand, causes a steady decrease in wave drag during SH spring, which delays the breakdown of the vortex, resulting in increased wave drag in summer.


2015 ◽  
Vol 15 (8) ◽  
pp. 11179-11221
Author(s):  
D. Pendlebury ◽  
D. Plummer ◽  
J. Scinocca ◽  
P. Sheese ◽  
K. Strong ◽  
...  

Abstract. CMAM30 is a 30 year data set extending from 1979 to 2010 that is generated using a version of the Canadian Middle Atmosphere Model (CMAM) in which the winds and temperatures are relaxed to the Interim Reanalysis product from the European Centre Medium-Range for Weather Forecasts (ERA-Interim). The data set has dynamical fields that are very close to the reanalysis below 1 hPa and chemical tracers that are self-consistent with respect to the model winds and temperature. The chemical tracers are expected to be close to actual observations. The data set is here compared to two satellite records – the Atmospheric Chemistry Experiment Fourier Transform Spectometer and the Odin Optical Spectrograph and InfraRed Imaging System – for the purpose of validating the temperature, ozone, water vapour and methane fields. Data from the Aura Microwave Limb Sounder is also used for validation of the chemical processing in the polar vortex. It is found that the CMAM30 temperature is warm by up to 5 K in the stratosphere, with a low bias in the mesosphere of ~ 5–15 K. Ozone is reasonable (± 15%) except near the tropopause globally, and in the Southern Hemisphere winter polar vortex. Water vapour is consistently low by 10–20%, with corresponding high methane of 10–20%, except in the Southern Hemisphere polar vortex. Discrepancies in this region are shown to stem from the treatment of polar stratospheric cloud formation in the model.


2017 ◽  
Vol 35 (4) ◽  
pp. 785-798 ◽  
Author(s):  
Friederike Lilienthal ◽  
Christoph Jacobi ◽  
Torsten Schmidt ◽  
Alejandro de la Torre ◽  
Peter Alexander

Abstract. A mechanistic global circulation model is used to simulate the Southern Hemisphere stratospheric, mesospheric, and lower thermospheric circulation during austral winter. The model includes a gravity wave (GW) parameterization that is initiated by prescribed 2-D fields of GW parameters in the troposphere. These are based on observations of GW potential energy calculated using GPS radio occultations and show enhanced GW activity east of the Andes and around the Antarctic. In order to detect the influence of an observation-based and thus realistic 2-D GW distribution on the middle atmosphere circulation, we perform model experiments with zonal mean and 2-D GW initialization, and additionally with and without forcing of stationary planetary waves (SPWs) at the lower boundary of the model. As a result, we find additional forcing of SPWs in the stratosphere, a weaker zonal wind jet in the mesosphere, cooling of the mesosphere and warming near the mesopause above the jet. SPW wavenumber 1 (SPW1) amplitudes are generally increased by about 10 % when GWs are introduced being longitudinally dependent. However, at the upper part of the zonal wind jet, SPW1 in zonal wind and GW acceleration are out of phase, which reduces the amplitudes there.


2019 ◽  
Vol 19 (14) ◽  
pp. 9485-9494 ◽  
Author(s):  
Pavle Arsenovic ◽  
Alessandro Damiani ◽  
Eugene Rozanov ◽  
Bernd Funke ◽  
Andrea Stenke ◽  
...  

Abstract. Energetic particle precipitation (EPP) affects the chemistry of the polar middle atmosphere by producing reactive nitrogen (NOy) and hydrogen (HOx) species, which then catalytically destroy ozone. Recently, there have been major advances in constraining these particle impacts through a parametrization of NOy based on high-quality observations. Here we investigate the effects of low (auroral) and middle (radiation belt) energy range electrons, separately and in combination, on reactive nitrogen and hydrogen species as well as on ozone during Southern Hemisphere winters from 2002 to 2010 using the SOCOL3-MPIOM chemistry-climate model. Our results show that, in the absence of solar proton events, low-energy electrons produce the majority of NOy in the polar mesosphere and stratosphere. In the polar vortex, NOy subsides and affects ozone at lower altitudes, down to 10 hPa. Comparing a year with high electron precipitation with a quiescent period, we found large ozone depletion in the mesosphere; as the anomaly propagates downward, 15 % less ozone is found in the stratosphere during winter, which is confirmed by satellite observations. Only with both low- and middle-energy electrons does our model reproduce the observed stratospheric ozone anomaly.


2015 ◽  
Vol 15 (21) ◽  
pp. 12465-12485 ◽  
Author(s):  
D. Pendlebury ◽  
D. Plummer ◽  
J. Scinocca ◽  
P. Sheese ◽  
K. Strong ◽  
...  

Abstract. CMAM30 is a 30-year data set extending from 1979 to 2010 that is generated using a version of the Canadian Middle Atmosphere Model (CMAM) in which the winds and temperatures are relaxed to the Interim Reanalysis product from the European Centre for Medium-Range Weather Forecasts (ERA-Interim). The data set has dynamical fields that are very close to the reanalysis below 1 hPa and chemical tracers that are self-consistent with respect to the model winds and temperature. The chemical tracers are expected to be close to actual observations. The data set is here compared to two satellite records – the Atmospheric Chemistry Experiment Fourier transform spectrometer and the Odin Optical Spectrograph and Infrared Imaging System – for the purpose of validating the temperature, ozone, water vapour and methane fields. Data from the Aura microwave limb sounder are also used for validation of the chemical processing in the polar vortex. It is found that the CMAM30 temperature is warmer by up to 5 K in the stratosphere, with a low bias in the mesosphere of ~ 5–15 K. Ozone is reasonable (±15 %), except near the tropopause globally and in the Southern Hemisphere winter polar vortex. Water vapour is consistently low by 10–20 %, with corresponding high methane of 10–20 %, except in the Southern Hemisphere polar vortex. Discrepancies in this region are shown to stem from the treatment of polar stratospheric cloud formation in the model.


2009 ◽  
Vol 22 (10) ◽  
pp. 2726-2742 ◽  
Author(s):  
Tiffany A. Shaw ◽  
Michael Sigmond ◽  
Theodore G. Shepherd ◽  
John F. Scinocca

Abstract The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.


Sign in / Sign up

Export Citation Format

Share Document